Interoperability with C
in Fortran 2003

Megan Damon - SIVO/NGIT
SIVO Fortran Series
February 12th 2008

Logistics

e Materials for this series can be found at

Contains slides and source code examples.
Latest materials may only be ready at-the-last-minute.

e Please be courteous:

Remote attendees should use “*6” to toggle the mute. This
will minimize background noise for other attendees.

e \Webex - under investigation

2/12/2008 Interoperability with C 2

Outline

e Introduction

e ISO_C_ BINDING intrinsic module
e Intrinsic types

e Interoperable procedures

e Interoperable data

e Best Practices & Limitations

e Resources

2/12/2008 Interoperability with C

Introduction

e Fortran 2003 provides a standard (and ultimately portable)
means for interoperating with C

Provides access to libraries and procedures developed in C

Conversely, provides access to Fortran libraries and procedures
from C

e Interoperability enforced by requirements on Fortran syntax;
compiler knows at compile time

Fortran compiler may support multiple C compilers
Selection of C compiler is vendor dependent

e Use of these features requires some familiarity with both C and
Fortran

2/12/2008 Interoperability with C 4

Supported Features

Features

ifort | NAG | xIf g95

gfortran

Interoperability with C | 10.0 | 5.1 10.0 [0.90

20070810

Feel free to contribute if you have
access to other compilers not
mentioned!

2/12/2008

Interoperability with C

ISO C BINDING

e A vendor provided intrinsic module

Provides named constants for declaring Fortran
data which interoperates with C data

Small number of procedures for managing pointers
and addresses

e Vendors may provide a means to select
different ISO_C BINDING modules among

varying C compilers
Best practice: To avoid naming conflicts it is

recommended that the ONLY options is used in
the USE statement.

2/12/2008 Interoperability with C 6

Intrinsic Data Types
Interoperable entities

e For each C data type provided by the vendor
there is an equivalent named constant in
ISO C BINDING

Value of the named constant specifies the KIND for
the corresponding Fortran data type

Support for: INTEGER, REAL, COMPLEX,
LOGICAL, and CHARACTER types

e Example of Fortran declaration interoperable

with C double:
real(KIND=C_DOUBLE) :: temperature

2/12/2008 Interoperability with C 7

Caveats

e Vendor is not required to support all cases
Should not be an issue on IEEE hardware (?)
Integer kinds:

-1 indicates no corresponding Fortran kind
-2 indicates no corresponding C data type
Floating point kinds:
-1 indicates no exact correspondence in precision
-2 indicates no exact correspondence in range
-3 neither
-4 any other reason
Same idea for invalid values of boolean and characters kinds

e Fortran does not provide support for unsigned kinds of integers

2/12/2008 Interoperability with C 8

Intrinsic Types

Fortran type Named constant from C type
ISO_C _BINDING
INTEGER C_INT int
INTEGER C_LONG short int
INTEGER C_INT32 int32_t
INTEGER C_INT64 int64_t
REAL C_FLOAT float
REAL C_DOUBLE double
COMPLEX C_FLOAT _COMPLEX float _Complex
LOGICAL C_BOOL _Bool
CHARACTER C_CHAR char

2/12/2008

Interoperability with C

Intrinsic Types -

C characters with special semantics

Name C definition Value Value
(C_CHAR=-1) | (C_CHAR# -1)
C_NULL_CHAR null character CHAR(0) \O’
C_ALERT alert ACHAR(7) \a’
C_BACKSPACE backspace ACHAR(8) \b’
C_FORM_FEED form feed ACHAR(12) P
C_NEW_LINE new line ACHAR(10) \n’
C_CARRIAGE_RETURN | carriage return | ACHAR(13) \r’
C_HORIZONTAL_TAB horizontal tab ACHAR(9) At
C_VERTICAL_TAB vertical tab ACHAR(11) \V’

2/12/2008

Interoperability with C

10

Intrinsic Procedures

C LOC (var)

Returns C address (type C_PTR) of var

Some restrictions may apply
C _FUNLOC (proc)

Returns C address (type C_FUNPTR) of procedure
C _ASSOCIATED (cPtrl [, cPtr2])

Inquiry function for object and function pointers

Returns false if cPtr1 is a null C pointer or if cPtr2 is present with a different
value

C_F POINTER (cPtrl, fPtrl [, shape])
Associates Fortran pointer, fPtr1, with address cPtr1 (type C_PTR)
Shape is required when fPtr1 is an array pointer

C _F _PROCPOINTER (cPtrl, fPtrl)

Associates Fortran procedure pointer, fPtr1 with the address of
interoperable C procedure cPtr1 (type C_FUNPTR)

2/12/2008 Interoperability with C 11

Interoperable Procedures

S A Fortran procedure is interoperable if
it has an explicit interface
it has been declared with the BIND attribute

the number of dummy arguments is equal to the number of formal
parameters in the prototype and are in the same relative positions as the
C parameter list

and all the dummy arguments are interoperable

° Return values

An interoperable Fortran function must have a result that is scalar and
interoperable

For a subroutine, the C prototype must have a void result
° Caveats

Interoperable functions cannot return array values

Fortran procedures cannot interoperate with C functions that take a
variable number of arguments (the C language specification allows this)

2/12/2008 Interoperability with C 12

Example of Interoperable
Fortran Procedure Interface

INTERFACE

FUNCTION func (i, j, k, 1, m), BIND (C)
USE, INTRINSIC :: ISO C_BINDING
INTEGER (C_SHORT) :: func
INTEGER (C_INT), VALUE :: i
REAL (C DOUBLE) :: j
INTEGER (C_INT) :: k, 1(10)
TYPE (C_PTR), VALUE :: m

END FUNCTION func

short func (int i, double *j, int *k, int 1[10], void *m)

2/12/2008 Interoperability with C

13

Binding Labels for Procedures

e A binding label is a value that specifies the name by
which a procedure with the BIND attribute is known

Has global scope

By default, it is the lower-case version of the Fortran
name

e Examples of binding labels for Fortran procedures
Function with assumed binding label of func
FUNCTION FUNC (1, j, k, 1, m), BIND (C)
Function with explicit binding label of C_Func
FUNCTION FUNC (1, j, k, 1, m), BIND (C, ‘C_Func’)

2/12/2008 Interoperability with C 14

Interoperable Data

e Fortran data is interoperable if an equivalent
data declaration can be made in C and the
data is said to be interoperable

2/12/2008

Scalar and array variables are interoperable
Dynamic arrays can be passed between the two
languages

The BIND attribute is required for a Fortran derived
type to be interoperable

C variables with external linkage can interoperate
with Fortran common blocks or module variables
that have the BIND attribute

Interoperability with C 15

Interoperability of Variables

e Fortran scalars are interoperable if
the type and type parameters are interoperable with a scalar C variable and
they are not declared as pointers nor have the allocatable attribute

e Fortran arrays
are interoperable if
the type and type parameters are interoperable
and are of explicit shape or assumed size
e.g. real :: A(3,4)
e.g. real :: A(3,*)
Not allowed real :: A(:,:)
interoperate with C arrays of the same type, type parameters and shape,
but with reversed subscripts
Example of an interoperable Fortran and C array
INTEGER :: A(18, 3:7, *)

|nt b[] [5] [18]

2/12/2008 Interoperability with C 16

Derived types

e Interoperable Fortran derived types must
specify the BIND (C) attribute
have the same number of components as the C struct type

have components with type and type parameters that are
interoperable with the types of the corresponding components of the
C struct type

e Components of the Fortran derived type

Correspond to the C struct type components declared in the same
relative position

Corresponding components do not need to have the same name

e Caveats

C struct types with bit fields or flexible array members are not
interoperable with Fortran types

Fortran types are not interoperable with a C union type

2/12/2008 Interoperability with C 17

Derived Type Source Example

2/12/2008

TYPE, BIND (C) :: fType
INTEGER (C INT) :: 1,]
REAL (C FLOAT)::s

END TYPE {Type

typedet struct {
Int m, n;
float r;

+ cType

Interoperability with C

18

Global Data

e A C variable with external linkage can interoperate
with a Fortran common block or module variable that
has the BIND attribute

e C variable with external linkage interoperates with a
common block specified in a BIND statement in one of
two ways:

The C variable is a struct type and the elements are
interoperable with the members of the common block

Or the common block contains only one interoperable
variable

e Only one variable can be associated with a C variable
with external linkage

2/12/2008 Interoperability with C 19

Global Data Example

use ISO_C_BINDING

COMMON /COM/ r, s

REAL(C_FLOAT)
BIND(C) :: /COM/

2T, S

2/12/2008

struct {float r, s;} com; /* external */

void setter() {
com.r = 3;
com.s = 4;

s

Array Variables

e A Fortran array of rank one is not interoperable with a
multidimensional C array

e Polymorphic, allocatable, and pointer arrays are never
interoperable

e A Fortran array of type character with a kind type of
C_CHAR is interoperable with a C string (C null
character as last element of the array)

ISO_C_ BINDING provides the constant C_ NULL CHAR

2/12/2008 Interoperability with C 21

Dynamic arrays

e C pointers are the mechanism for passing dynamic
arrays between the two languages

an allocated allocatable Fortran array can be passed to C

an array allocated in C can be passed to a Fortran pointer

a Fortran pointer target or assumed-shape array (no bounds
specified) cannot be passed to C

e ISO_C BINDING provides

C_PTRis the derived type for interoperating with any C object
pointer type

C _NULL PTR is the named constant of type C_PTR with the
value NULL in C

2/12/2008 Interoperability with C 22

Examples of Interoperable
Dynamic Arrays

typedet struct { SUBROUTINE simulation(arrays) bind(c)
int lenc, lenf;
float *c, *f;
} pass; TYPE, BIND(c) :: pass
integer (C_INT) :: lenc, lenf
int main () { TYPE (C PTR) :: ¢, f
END TYPE pass

pass *arrays=(pass™*)malloc(sizeof(pass));)
(*arrays).lenc = 2; TYPE (pass), INTENT(INOUT) :: arrays

arrays->c =malloc((*arrays).lenc*sizeof(float)); | REAL (C_FLOAT), POINTER : cArray (:)
al0] =10.0; CALL C F POINTER(arrays%c,cArray, (/arrays%lenc/))

a[1]=20.0;
print*, cArray \

for(i=0;i<(*arrays).lenc;i++) {

N Ay
} (armays>eriyalil - S initalizes the
S| arrays to be 2. Fortran
passed to Fortran associates cArray
/* Calling Fortran routine "simulation" */ with array initialized
simulation(arrays); in C program and
roperability with C prints the values

Examples of Interoperable
Dynamic Arrays

typedef struct { SUBROUTINE simulation(arrays) bind(c)
int lenc, lenf; 1. C program
float *c, *f; allocates arrays of
} pass; type pass TYPE, BIND(C) :: pass
INTEGER (C INT) :: lenc, lenf
int main () { / TYPE (C_PTR) :: ¢, f
END TYPE pass

pass *arrays=(pass *)malloc(sizeof(pass));

TYPE(pass),INTENT(INOUT) :: arrays

/* Calling Fortran routine "simulation" */ || REAL(c float), ALLOCATABLE,TARGET,SAVE :: eta(:)
simulation(arrays);

arrays%lenf = 3

for(i=0;1<(*arrays).lenf;1++) { ALLOCATE (eta(arrays%lenf))
printf("%f\n", *(arrays->f+1)); do 1 = 1l,arrays%lenf 2. Fortran
) eta(i) = 10.*1 allocates an array
enddo and makes it

\ arrays%f = C LOC(eta) available in C

3. C prints the
2/12/2008 modified values Interoperability with C 24

of arrays->f

Best Practices & Limitations

e Best practices:
Use explicit “ONLY” clause for use of ISO_C_BINDING
Use “name=" specifier for external names
Use all caps for named constants
Use ISO_C_BINDING for portability in-and-of-itself?
e Limitations
Vendor need not support all available C compilers
This is C not C++

Limited support for advanced Fortran features
No optional arguments
No array return values
No assumed-shape arrays (arr(:,:)) nor pointer targets

Etc.

2/12/2008 Interoperability with C 25

Resources

e This talk:

e Questions to Modeling Guru:
e SIVO code examples on Modeling Guru
e Fortran 2003 standard:

e John Reid summary:

e Real world examples
Fortran 2003 Interface to OpenGL:

Fotran 2003 version of NETCDF:

FGSL: A Fortran interface to the GNU Scientific Library

2/12/2008 Interoperability with C 26

Next Fortran 2003 Session

e Extensions to Allocatables and Pointers
e Tom Clune will present

e Tuesday, February 26 2008

e B28-E210

