
Interoperability with C
 in Fortran 2003
Megan Damon - SIVO/NGIT

SIVO Fortran Series
February 12th 2008



2/12/2008 Interoperability with C 2

Logistics
 Materials for this series can be found at

http://modelingguru.nasa.gov/clearspace/docs/DOC-1375
 Contains slides and source code examples.
 Latest materials may only be ready at-the-last-minute.

 Please be courteous:
 Remote attendees should use “*6” to toggle the mute.   This

will minimize background noise for other attendees.
 Webex - under investigation



2/12/2008 Interoperability with C 3

Outline
 Introduction
 ISO_C_BINDING intrinsic module
 Intrinsic types
 Interoperable procedures
 Interoperable data
 Best Practices & Limitations
 Resources



2/12/2008 Interoperability with C 4

Introduction

 Fortran 2003 provides a standard (and ultimately portable)
means for interoperating with C
 Provides access to libraries and procedures developed in C
 Conversely, provides access to Fortran libraries and procedures

from C
 Interoperability enforced by requirements on Fortran syntax;

compiler knows at compile time
 Fortran compiler may support multiple C compilers
 Selection of C compiler is vendor dependent

 Use of these features requires some familiarity with both C and
Fortran



2/12/2008 Interoperability with C 5

Supported Features

200708100.9010.05.110.0Interoperability with C
g95 gfortranxlfNAGifortFeatures

Feel free to contribute if you have
access to other compilers not
mentioned!



2/12/2008 Interoperability with C 6

ISO_C_BINDING
 A vendor provided intrinsic module

 Provides named constants for declaring Fortran
data which interoperates with C data

 Small number of procedures for managing pointers
and addresses

 Vendors may provide a means to select
different ISO_C_BINDING modules among
varying C compilers

Best practice: To avoid naming conflicts it is
recommended that the ONLY options is used in
the USE statement.



2/12/2008 Interoperability with C 7

Intrinsic Data Types
Interoperable entities

 For each C data type provided by the vendor
there is an equivalent named constant in
ISO_C_BINDING
 Value of the named constant specifies the KIND for

the corresponding Fortran data type
 Support for: INTEGER, REAL, COMPLEX,

LOGICAL, and CHARACTER types
 Example of Fortran declaration interoperable

with C double:
real(KIND=C_DOUBLE) :: temperature



2/12/2008 Interoperability with C 8

Caveats
 Vendor is not required to support all cases

 Should not be an issue on IEEE hardware (?)
 Integer kinds:

 -1 indicates no corresponding Fortran kind
 -2 indicates no corresponding C data type

 Floating point kinds:
 -1 indicates no exact correspondence in precision
 -2 indicates no exact correspondence in range
 -3 neither
 -4 any other reason

 Same idea for invalid values of boolean and characters kinds
 Fortran does not provide support for unsigned kinds of integers



2/12/2008 Interoperability with C 9

Intrinsic Types

intC_INTINTEGER

charC_CHARCHARACTER

_BoolC_BOOLLOGICAL

float _ComplexC_FLOAT_COMPLEXCOMPLEX

doubleC_DOUBLEREAL

floatC_FLOATREAL

int64_tC_INT64INTEGER

int32_tC_INT32INTEGER

short intC_LONGINTEGER

C typeNamed constant from
ISO_C_BINDING

Fortran type



2/12/2008 Interoperability with C 10

Intrinsic Types -
C characters with special semantics

‘\v’ACHAR(11)vertical tabC_VERTICAL_TAB

‘\t’ACHAR(9)horizontal tabC_HORIZONTAL_TAB

‘\r’ACHAR(13)carriage returnC_CARRIAGE_RETURN

‘\n’ACHAR(10)new lineC_NEW_LINE

‘\f’ACHAR(12)form feedC_FORM_FEED

‘\b’ACHAR(8)backspaceC_BACKSPACE
‘\a’ACHAR(7)alertC_ALERT

‘\0’CHAR(0)null characterC_NULL_CHAR

Value
(C_CHAR≠  -1)

Value
(C_CHAR= -1)

C definitionName



2/12/2008 Interoperability with C 11

Intrinsic Procedures
 C_LOC (var)

 Returns C address (type C_PTR)  of var
 Some restrictions may apply

 C_FUNLOC (proc)
 Returns C address (type C_FUNPTR) of procedure

 C_ASSOCIATED (cPtr1 [, cPtr2])
 Inquiry function for object and function pointers
 Returns false if cPtr1 is a null C pointer or if cPtr2 is present with a different

value
 C_F_POINTER (cPtr1, fPtr1 [, shape])

 Associates Fortran pointer, fPtr1, with address cPtr1 (type C_PTR)
 Shape is required when fPtr1 is an array pointer

 C_F_PROCPOINTER (cPtr1, fPtr1)
 Associates Fortran procedure pointer, fPtr1 with the address of

interoperable C procedure cPtr1 (type C_FUNPTR)



2/12/2008 Interoperability with C 12

Interoperable Procedures
 A Fortran procedure is interoperable if

 it has an explicit interface
 it has been declared with the BIND attribute
 the number of dummy arguments is equal to the number of formal

parameters in the prototype and are in the same relative positions as the
C parameter list

 and all the dummy arguments are interoperable
 Return values

 An interoperable Fortran function must have a result that is scalar and
interoperable

 For a subroutine, the C prototype must have a void result
 Caveats

 Interoperable functions cannot return array values
 Fortran procedures cannot interoperate with C functions that take a

variable number of arguments (the C language specification allows this)



2/12/2008 Interoperability with C 13

Example of Interoperable
Fortran Procedure Interface

INTERFACE
   FUNCTION func (i, j, k, l, m), BIND (C)
      USE, INTRINSIC :: ISO_C_BINDING
      INTEGER (C_SHORT) :: func
      INTEGER (C_INT), VALUE :: i
      REAL (C_DOUBLE) :: j
      INTEGER (C_INT) :: k, l(10)
      TYPE (C_PTR), VALUE :: m
   END FUNCTION func
…
short func (int i, double *j, int *k, int l[10], void *m)



2/12/2008 Interoperability with C 14

Binding Labels for Procedures
 A binding label is a value that specifies the name by

which a procedure with the BIND attribute is known
 Has global scope
 By default, it is the lower-case version of the Fortran

name
 Examples of binding labels for Fortran procedures

 Function with assumed binding label of func
FUNCTION FUNC (i, j, k, l, m), BIND (C)

 Function with explicit binding label of C_Func
 FUNCTION FUNC (i, j, k, l, m), BIND (C, ‘C_Func’)



2/12/2008 Interoperability with C 15

Interoperable Data
 Fortran data is interoperable if an equivalent

data declaration can be made in C and the
data is said to be interoperable
 Scalar and array variables are interoperable
 Dynamic arrays can be passed between the two

languages
 The BIND attribute is required for a Fortran derived

type to be interoperable
 C variables with external linkage can interoperate

with Fortran common blocks or module variables
that have the BIND attribute



2/12/2008 Interoperability with C 16

Interoperability of Variables
 Fortran scalars are interoperable if

 the type and type parameters are interoperable with a scalar C variable and
 they are not declared as pointers nor have the allocatable attribute

 Fortran arrays
 are interoperable if

 the type and type parameters are interoperable
 and are of explicit shape or assumed size

 e.g. real :: A(3,4)
 e.g. real :: A(3,*)
 Not allowed real :: A(:,:)

 interoperate with C arrays of the same type, type parameters and shape,
but with reversed subscripts

 Example of an interoperable Fortran and C array
INTEGER :: A(18, 3:7, *)
…
int b[] [5] [18]



2/12/2008 Interoperability with C 17

Derived types
 Interoperable Fortran derived types must

 specify the BIND (C) attribute
 have the same number of components as the C struct type
 have components with type and type parameters that are

interoperable with the types of the corresponding components of the
C struct type

 Components of the Fortran derived type
 Correspond to the C struct type components declared in the same

relative position
 Corresponding components do not need to have the same name

 Caveats
 C struct types with bit fields or flexible array members are not

interoperable with Fortran types
 Fortran types are not interoperable with a C union type



2/12/2008 Interoperability with C 18

Derived Type Source Example
TYPE, BIND (C) :: fType
   INTEGER (C_INT) :: i, j
   REAL (C_FLOAT) :: s
END TYPE fType

 …
typedef struct {
   int m, n;
   float r;
} cType



2/12/2008 Interoperability with C 19

Global Data
 A C variable with external linkage can interoperate

with a Fortran common block or module variable that
has the BIND attribute

 C variable with external linkage  interoperates with a
common block specified in a BIND statement in one of
two ways:
 The C variable is a struct type and the elements are

interoperable with the members of the common block
 Or the common block contains only one interoperable

variable
 Only one variable can be associated with a C variable

with external linkage



2/12/2008 Interoperability with C 20

Global Data Example
use ISO_C_BINDING

COMMON /COM/ r, s
REAL(C_FLOAT) :: r, s
BIND(C) :: /COM/

struct {float r, s;} com; /* external */

void setter() {
  com.r = 3;
  com.s = 4;
}



2/12/2008 Interoperability with C 21

Array Variables
 A Fortran array of rank one is not interoperable with a

multidimensional C array
 Polymorphic, allocatable, and pointer arrays are never

interoperable
 A Fortran array of type character with a kind type of

C_CHAR is interoperable with a C string (C null
character as last element of the array)
 ISO_C_BINDING provides the constant C_NULL_CHAR



2/12/2008 Interoperability with C 22

Dynamic arrays
 C pointers are the mechanism for passing dynamic

arrays between the two languages
 an allocated allocatable Fortran array can be passed to C
 an array allocated in C can be passed to a Fortran pointer
 a Fortran pointer target or assumed-shape array (no bounds

specified) cannot be passed to C
 ISO_C_BINDING provides

 C_PTR is the derived type for interoperating with any C object
pointer type

 C_NULL_PTR is the named constant of type C_PTR with the
value NULL in C



2/12/2008 Interoperability with C 23

Examples of Interoperable
Dynamic Arrays

int main () {
…
pass *arrays=(pass*)malloc(sizeof(pass));
(*arrays).lenc = 2;
arrays->c =malloc((*arrays).lenc*sizeof(float));
a[0] = 10.0;
a[1] = 20.0;

for(i=0;i<(*arrays).lenc;i++) {
   *(arrays->c+i)=a[i];
}

/* Calling Fortran routine "simulation" */
   simulation(arrays);

typedef struct {
  int lenc, lenf;
  float *c, *f;
} pass;

1. C initializes the
arrays to be
passed to Fortran

SUBROUTINE simulation(arrays) bind(c)

…

TYPE (pass), INTENT(INOUT) :: arrays

REAL (C_FLOAT), POINTER : cArray (:)

CALL C_F_POINTER(arrays%c,cArray, (/arrays%lenc/))

print*, cArray

TYPE, BIND(c) :: pass
      integer (C_INT) :: lenc, lenf
      TYPE (C_PTR) :: c, f
 END TYPE pass

2. Fortran
associates cArray
with array initialized
in C program and
prints the values



2/12/2008 Interoperability with C 24

Examples of Interoperable
Dynamic Arrays

SUBROUTINE simulation(arrays) bind(c)

…

TYPE(pass),INTENT(INOUT) :: arrays
REAL(c_float),ALLOCATABLE,TARGET,SAVE :: eta(:)

arrays%lenf = 3
ALLOCATE (eta(arrays%lenf))
do i = 1,arrays%lenf
   eta(i) = 10.*i
enddo
arrays%f = C_LOC(eta)

TYPE, BIND(C) :: pass
      INTEGER (C_INT) :: lenc, lenf
      TYPE (C_PTR) :: c, f
 END TYPE pass

2. Fortran
allocates an array
and makes it
available in C

int main () {
…
pass *arrays=(pass *)malloc(sizeof(pass));

/* Calling Fortran routine "simulation" */
   simulation(arrays);

for(i=0;i<(*arrays).lenf;i++) {
   printf("%f\n",*(arrays->f+i));
}

…
3. C prints the
modified values
of arrays->f

typedef struct {
  int lenc, lenf;
  float *c, *f;
} pass;

1. C program
allocates arrays of
type pass



2/12/2008 Interoperability with C 25

Best Practices & Limitations
 Best practices:

 Use explicit “ONLY” clause for use of ISO_C_BINDING
 Use “name=” specifier for external names
 Use all caps for named constants
 Use ISO_C_BINDING for portability in-and-of-itself?

 Limitations
 Vendor need not support all available C compilers
 This is C not C++
 Limited support for advanced Fortran features

 No optional arguments
 No array return values
 No assumed-shape arrays ( arr(:,:) ) nor pointer targets
 Etc.



2/12/2008 Interoperability with C 26

Resources
 This talk:

 https://modelingguru.nasa.gov/clearspace/docs/DOC-1390
 Questions to Modeling Guru: https://modelingguru.nasa.gov
 SIVO code examples on Modeling Guru
 Fortran 2003 standard:

http://www.open-std.org/jtc1/sc22/open/n3661.pdf
 John Reid summary:

 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.pdf
 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.ps.gz

 Real world examples
 Fortran 2003 Interface to OpenGL:

http://www-stone.ch.cam.ac.uk/pub/f03gl/
 Fotran 2003 version of NETCDF:

ftp://ftp.unidata.ucar.edu/pub/netcdf/contrib/netcdf-3.6.1-f03-2.tgz
 FGSL: A Fortran interface to the GNU Scientific Library

http://www.lrz-muenchen.de/services/software/mathematik/gsl/fortran/index.html



2/12/2008 Interoperability with C 27

Next Fortran 2003 Session
 Extensions to Allocatables and Pointers
 Tom Clune will present
 Tuesday, February 26 2008
 B28-E210


