OOP: Polymorphism in F2003

Tom Clune :::

SIVO Fortran 2003 Series :.
May 20, 2008

Logistics

e Materials for this series can be found at

Contains slides and source code examples.
Latest materials may only be ready at-the-last-minute.

e Please be courteous:

Remote attendees should use “*6” to toggle the mute. This
will minimize background noise for other attendees.

5/20/08 OOP Polymporphism 2

Outline

e Procedure variables

e Class polymorphism
CLASS

e Template polymorphism
Parameterized Types

5/20/08 OOP Polymporphism

Procedure Variables

e F2003 permits the declaration of variables associated
with procedures.
Can have explicit or implicit interface
Can have the POINTER attribute.
Cannot be generic nor elemental.

e Common uses:
Dummy arguments
Dynamic pointers
Components in derived types

5/20/08 OOP Polymporphism 4

Procedure Pointer Syntax

e A typical declaration of a procedure pointer:
PROCEDURE ([proc-interface]), POINTER :: p [=>
null ()]

Proc-interface can be any of:
Empty - implicit interface (external subroutine)
Interface block or reference procedure - explicit interface
Type - implicit interface (external function)
“=>null()” is optional
e Other combinations are possible. E.g.
real, external, pointer :: realFunc

e Note that the syntax is cleaner than that for C, but a bit
more verbose in most cases.

5/20/08 OOP Polymporphism 5

Assigning Procedure Pointers

e Pointer assignment follows the same conventions as
other portions of the standard:
ptr => target
e Example 1: subroutine reference
proc => mySub
call proc(a,b)
e Example 2: function evaluation:
fp => exp
sum = sum + fp(1.45)

5/20/08 OOP Polymporphism 6

Explicit Interface

e Example 1. Prototype procedure
procedure (square), pointer :: power => null()

real function square(x)
square = X*X

end function square
Pointer “power” can point to any real valued function which has 1 real
argument.

e Example 2: Abstract interface - useful when no prototype interface is

available in current scope:
abstract interface
subroutine processInterface(...)

end subroutine processInterface
end interface
procedure (processInterface), pointer :: process

Pointer “process” can point to any procedure with the same interface as
defined in the interface block.

5/20/08 OOP Polymporphism 7

Function return

e Procedure pointers can be the return value of a function:

function getMethod(name) result(fPtr)
character(len=*) :: name
procedure(interface), pointer :: fPtr

select case (trim(name))

case (’'a’)
fPtr => methodl
case(‘'b’)

fPtr => method2
case default
fPtr => null()
end select case
end function getMethod

procedure(interface) pointer :: p
p => getMethod(‘a’)

5/20/08 OOP Polymporphism 8

Procedure Components

e Procedure pointers can be components within a derived type.

Essentially the same syntax as for type-bound procedures

Default behavior is to pass the “object” as the first argument when
using the component.

PASS/NOPASS attribute can be used to override default
Key differences

Procedure pointers are data components (go above CONTAINS
clause)

Procedure pointers are more general - can be used to point to
arbitrary “behavior”.

Best to use type-bound procedures if same behavior is expected of
all instances for a given derived type.

5/20/08 OOP Polymporphism 9

Proc Component Example

e The following example is an example that might be useful
within the context of a nonlinear solver.

Procedure components can use other data elements without explicit
reference within the solver.

Especially powerful with inheritance

type :: Nonlinear
integer :: coefficient
real :: tuningParam
procedure(NonlinInterface), pointer :: eval
end type Nonlinear
type (Nonlinear) :: myObj

myObj % eval => complicatedFunctionOf x

subroutine solver(obj, x0, x1)

type (Nonlinear) :: obj
real :: x0, x1
xXGuess = ..

-_—)

y = obj % eval(x)! Uses obj%coefficient and obj%tuningParam
end subroutine solver

5/20/08 OOP Polymporphism 10

Example: Table of procedures

type ProcPtr ! To support array
character (len=MAXLEN) :: name
procedure(interfc), pointer :: p => null()
end type ProcPtr
type ProcedureTable

type (ProcPtr), allocatable :: list(:)
contains

procedure :: addProcedure

procedure :: getProcedure

end type

5/20/08 OOP Polymporphism 11

Polymorphic variables

e A variable declared with the keyword CLASS (instead
of TYPE) is polymorphic:
CLASS (declaredType)

Variable can take on the specified type or any of its
extensions during execution.

Type at any given point in execution is ‘dynamic type’'.
Type in declaration is the ‘declared type’'.
e Restrictions: must be either pointer, allocatable, or a
dummy argument.

Variable gets dynamic type from allocation, pointer
assignment, or argument association.

e Unlimited polymorphic entities: CLASS (*)
Type compatible with any data type including intrinsics.

5/20/08 OOP Polymporphism 12

Polymorphic assignment

e Derived-type intrinsic assignment
Extended to allow RHS (NOT LHS) to be polymorphic

Types must conform - RHS may have dynamic type that is
extension of LHS

Components of LHS are copied to corresponding components
of RHS

e Pointer assignment
Pointer is required to be type compatible with target
Kind-type parameters must be the same (see parameterized
types)
If polymorphic - assumes the dynamic type of the target

Exception: pointer may be of a sequence derived type whe
the target is unlimited polymorphic and has that derived type
as its dynamic type.

5/20/08 OOP Polymporphism 13

Example usage

Type Point
real :: X,y
End Type Point

Type, extends(Point)
real :: z
End Type Point3D

Type, extends(Point)

real :: r, g, b
End type ColorPoint

5/20/08

Point3D

ColorPoint

OOP Polymporphism

14

000
0000
0000
32

Example cont’d :

Type (Point) :: pO

Type (Point3D), target :: pl

Type (ColorPoint), target :: p2, p4

Class (Point), pointer :: p3 => null()

Call doSomething(p3) ! No dynamic type yet

p3 => pl

Call doSomething(p3) ! doSomething works with generic type
p4 = p3 ! Not allowed - wrong types

p3 => p2

Call doSomething(p3)

p4 = p3 ! Copy x,V,2,r,g,b from p3

PO = p3 ! Copy x,y back

5/20/08 OOP Polymporphism 15

Extension to Allocate

e Allocate statement now accepts an optional argument that can
specify the dynamic type of a polymorphic object:
allocate(var, SOURCE=other)
Allocation also copies source into var

Declaration type and dynamic type of source must be type
compatible

e Examples:
type (extended) :: foo
type (other) :: bar
class(base), allocatable :: var
allocate(var, SOURCE=fo00)
! Var dynamic type is “extended”
deallocate(var)
allocate(var, SOURCE=bar)
! Var dynamic type is now “other”

5/20/08 OOP Polymporphism 16

Inquiry intrinsic functions

e SAME TYPE AS(A,B)

Returns scalar default logical

True if A and B have the same dynamic type
e EXTENDS TYPE OF(A,MOLD)

Returns scalar default logical
True if dynamic type of A is an extension of the type of MOLD

True if MOLD is unlimited polymorphic, disassociated pointer,
or unallocated allocatable.

5/20/08 OOP Polymporphism 17

Select Type Construct

e Compiler does not ‘know’ about dynamic type of polymorphic
entity.
Use can only access properties (methods/components) of declared
type
e Access to other components of dynamic type is through the
SELECT TYPE construct
Similar to SELECT CASE, but for dynamic types
Analog of ‘dynamic_cast’ in C++
TYPE IS (type) - dynamic type exactly matches type
CLASS IS (type) - dynamic type is type or any extension

If more than one matches, the one that is an extension of all others
Is chosen.

CLASS DEFAULT - matches any.

Within each block, variable acts as if declared type is given on the
TYPE IS or CLASS IS clause.

5/20/08 OOP Polymporphism 18

Select Type Example

TYPE (animal) :: a

TYPE (vertebrate) :: b ! Extends animal
TYPE (mammal) :: c ! Extends vertebrate
TYPE (cat) :: d ! Extends mammal

TYPE (e ! Extends mammal
CLASS (animal), pointer :: pet

primate) :

SELECT TYPE (pet) ! Can also use assoc.

TYPE IS (primate)

call pet % swingOnBranch()
TYPE IS (cat)

call pet % sharpenClaws/()
CLASS IS (mammal)

call pet % shedHair ()
CLASS DEFAULT

END SELECT TYPE

5/20/08 OOP Polymporphism

(p => pet)

19

Advanced Example - Decorate

e Combine polymorphism and “aggregation” to get new effects
Override class methods for any extension of base class
Still acts as proper subclass
E.g. add a diagnostic to certain methods

type base
end type base
type, extends(base) :: decorator

class (base) :: reference

end type decorator

type (someExtension) :: a
type (decorator) :: b
b = newDecorator(a) ! Store “a” as reference

5/20/08 OOP Polymporphism

20

Parameterized Types

e Sometimes referred to as parametric polymorphism
e Allows user-defined derived types that are parameterized by
’kind" and ‘length’ parameters.
Similar capabilities as those provided for intrinsic types

KIND parameters are constant (fixed at compile time) and can be
used as a KIND parameter for other intrinsic or derived types.

Can have a default value

LEN parameter is akin to that of the length parameter for character
and can be used for

Character lengths of character components
Bounds of array components
e Limited compared to templates in other languages
E.g. cannot overload integer and floating point

5/20/08 OOP Polymporphism 21

Parameterized Syntax

Integer, parameter :: DP = kind(0.0d0)
Integer, parameter :: SP = kind(0.0)

type subregion(kind, im, jm)

integer, KIND :: kind = DP ! Default value
integer, LEN :: 1im, Jjm
real (kind) :: patch(im, jm)

End type subregion
type (subregion(DP, 10, 20)) :: dp

type (subregion(SP, 20, jm=20)) :: sp ! Named arg
type (subregion(10, 20)) ! Default DP

5/20/08 OOP Polymporphism 22

Parameter Enquiry

Value of TYPE and KIND parameters can be obtained
as:

print*, obj % kind

print*,obj % im, obj % jm

Extension for intrinsic types to match this style

character(len=MAXLEN) :: string
real (Kind=KIND(0.0DO)) :: X

print*, string len

Q
)
print*, x % kind

5/20/08 OOP Polymporphism 23

Allocatable Parameterized

e Deferred types for parameterized allocatable variables
are specified at allocation.

Non-deferred types must agree

Type (subregion(SP,im=10,Jm=5) :: a
Type (subregion(SP,:,:), ALLOCATABLE
myRegion,b,c

! This one copies from the source
Allocate(myRegion, SOURCE=a) ! Or
! This one does not copy

Allocate(subregion(SP,im=10, Jm=5) :: b,c)

5/20/08 OOP Polymporphism 24

Dummy Variables

e For a dummy argument, an asterisk (*) may be used to
iIndicate an assumed value for LEN parameters
KIND parameters must be an initialization expression

type (subregion(SP,im=7,Jjm=8)) :: a
call proc(a)

subroutine proc(argqg)
! im, Jjm from actual argument
type (subregion(SP,*,*)) :: arg
end subroutine proc

5/20/08 OOP Polymporphism 25

Supported features

e |IBM XLF has procedure pointers
e Polymorphic variables generally supported by both
IBM XLF and NAG F95
Support is somewhat fragile at this time
No support yet for Unlimited Polymorphic Entities.

e Parameterized types generally not available at this
time.

5/20/08 OOP Polymporphism 26

Pitfalls and Best Practices

e Polymorphic variables must have either the
ALLOCATABLE or POINTER attribute or be a dummy
variable. (Always get dynamic type from other entity.)

e Polymorphism combined with subclassing is generally
safer and clearer than procedure pointers.

5/20/08 OOP Polymporphism 27

Resources

SIVO Fortran 2003 series:

Questions to Modeling Guru:
SIVO code examples on Modeling Guru
Fortran 2003 standard:

John Reid summary:

Newsgroups

Mailing list

5/20/08 OOP Polymporphism

28

