
OOP: Polymorphism in F2003

Tom Clune
SIVO Fortran 2003 Series

May 20, 2008

5/20/08 OOP Polymporphism 2

Logistics
 Materials for this series can be found at

http://modelingguru.nasa.gov/clearspace/docs/DOC-1375
 Contains slides and source code examples.
 Latest materials may only be ready at-the-last-minute.

 Please be courteous:
 Remote attendees should use “*6” to toggle the mute. This

will minimize background noise for other attendees.

5/20/08 OOP Polymporphism 3

Outline
 Procedure variables
 Class polymorphism

 CLASS

 Template polymorphism
 Parameterized Types

5/20/08 OOP Polymporphism 4

Procedure Variables
 F2003 permits the declaration of variables associated

with procedures.
 Can have explicit or implicit interface
 Can have the POINTER attribute.
 Cannot be generic nor elemental.

 Common uses:
 Dummy arguments
 Dynamic pointers
 Components in derived types

5/20/08 OOP Polymporphism 5

Procedure Pointer Syntax
 A typical declaration of a procedure pointer:

PROCEDURE ([proc-interface]), POINTER :: p [=>
null()]

 Proc-interface can be any of:
 Empty - implicit interface (external subroutine)
 Interface block or reference procedure - explicit interface
 Type - implicit interface (external function)

 “=> null()” is optional
 Other combinations are possible. E.g.
real, external, pointer :: realFunc

 Note that the syntax is cleaner than that for C, but a bit
more verbose in most cases.

5/20/08 OOP Polymporphism 6

Assigning Procedure Pointers
 Pointer assignment follows the same conventions as

other portions of the standard:
ptr => target

 Example 1: subroutine reference
proc => mySub
call proc(a,b)

 Example 2: function evaluation:
fp => exp
sum = sum + fp(1.45)

5/20/08 OOP Polymporphism 7

Explicit Interface
 Example 1: Prototype procedure

procedure (square), pointer :: power => null()
…
real function square(x)
 square = x*x
end function square
 Pointer “power” can point to any real valued function which has 1 real

argument.
 Example 2: Abstract interface - useful when no prototype interface is

available in current scope:
abstract interface
 subroutine processInterface(…)
 …
 end subroutine processInterface
end interface
procedure (processInterface), pointer :: process

 Pointer “process” can point to any procedure with the same interface as
defined in the interface block.

5/20/08 OOP Polymporphism 8

Function return
 Procedure pointers can be the return value of a function:

function getMethod(name) result(fPtr)
 character(len=*) :: name
 procedure(interface), pointer :: fPtr

 select case (trim(name))
 case (‘a’)

fPtr => method1
 case(‘b’)
 fPtr => method2
 case default
 fPtr => null()
 end select case
end function getMethod
…
procedure(interface) pointer :: p
p => getMethod(‘a’)

5/20/08 OOP Polymporphism 9

Procedure Components
 Procedure pointers can be components within a derived type.

 Essentially the same syntax as for type-bound procedures
 Default behavior is to pass the “object” as the first argument when

using the component.
 PASS/NOPASS attribute can be used to override default

 Key differences
 Procedure pointers are data components (go above CONTAINS

clause)
 Procedure pointers are more general - can be used to point to

arbitrary “behavior”.
 Best to use type-bound procedures if same behavior is expected of

all instances for a given derived type.

5/20/08 OOP Polymporphism 10

Proc Component Example
 The following example is an example that might be useful

within the context of a nonlinear solver.
 Procedure components can use other data elements without explicit

reference within the solver.
 Especially powerful with inheritance

 type :: Nonlinear
 integer :: coefficient
 real :: tuningParam
 procedure(NonlinInterface), pointer :: eval
end type Nonlinear
type (Nonlinear) :: myObj
…
myObj % eval => complicatedFunctionOf_x
…
subroutine solver(obj, x0, x1)
 type (Nonlinear) :: obj
 real :: x0, x1
 xGuess = …
 y = obj % eval(x)! Uses obj%coefficient and obj%tuningParam
end subroutine solver

5/20/08 OOP Polymporphism 11

Example: Table of procedures
type ProcPtr ! To support array
 character(len=MAXLEN) :: name
 procedure(interfc), pointer :: p => null()
end type ProcPtr
type ProcedureTable
 type (ProcPtr), allocatable :: list(:)
contains
 procedure :: addProcedure
 procedure :: getProcedure
end type

5/20/08 OOP Polymporphism 12

Polymorphic variables
 A variable declared with the keyword CLASS (instead

of TYPE) is polymorphic:
CLASS (declaredType) …
 Variable can take on the specified type or any of its

extensions during execution.
 Type at any given point in execution is ‘dynamic type’.
 Type in declaration is the ‘declared type’.

 Restrictions: must be either pointer, allocatable, or a
dummy argument.
 Variable gets dynamic type from allocation, pointer

assignment, or argument association.
 Unlimited polymorphic entities: CLASS (*)

 Type compatible with any data type including intrinsics.

5/20/08 OOP Polymporphism 13

Polymorphic assignment
 Derived-type intrinsic assignment

 Extended to allow RHS (NOT LHS) to be polymorphic
 Types must conform - RHS may have dynamic type that is

extension of LHS
 Components of LHS are copied to corresponding components

of RHS
 Pointer assignment

 Pointer is required to be type compatible with target
 Kind-type parameters must be the same (see parameterized

types)
 If polymorphic - assumes the dynamic type of the target

 Exception: pointer may be of a sequence derived type whe
the target is unlimited polymorphic and has that derived type
as its dynamic type.

5/20/08 OOP Polymporphism 14

Example usage
Type Point
 real :: x,y
End Type Point

Type, extends(Point) :: Point3D
real :: z

End Type Point3D

Type, extends(Point) :: ColorPoint
real :: r, g, b

End type ColorPoint
…

5/20/08 OOP Polymporphism 15

Example cont’d
Type (Point) :: p0
Type (Point3D), target :: p1
Type (ColorPoint), target :: p2, p4
Class (Point), pointer :: p3 => null()

Call doSomething(p3) ! No dynamic type yet
p3 => p1
Call doSomething(p3) ! doSomething works with generic type

p4 = p3 ! Not allowed - wrong types
p3 => p2
Call doSomething(p3)
p4 = p3 ! Copy x,y,z,r,g,b from p3
P0 = p3 ! Copy x,y back

5/20/08 OOP Polymporphism 16

Extension to Allocate
 Allocate statement now accepts an optional argument that can

specify the dynamic type of a polymorphic object:
 allocate(var, SOURCE=other)
 Allocation also copies source into var
 Declaration type and dynamic type of source must be type

compatible
 Examples:

type (extended) :: foo
type (other) :: bar
class(base), allocatable :: var
allocate(var, SOURCE=foo)
! Var dynamic type is “extended”
deallocate(var)
allocate(var, SOURCE=bar)
! Var dynamic type is now “other”

5/20/08 OOP Polymporphism 17

Inquiry intrinsic functions
 SAME_TYPE_AS(A,B)

 Returns scalar default logical
 True if A and B have the same dynamic type

 EXTENDS_TYPE_OF(A,MOLD)
 Returns scalar default logical
 True if dynamic type of A is an extension of the type of MOLD
 True if MOLD is unlimited polymorphic, disassociated pointer,

or unallocated allocatable.

5/20/08 OOP Polymporphism 18

Select Type Construct
 Compiler does not ‘know’ about dynamic type of polymorphic

entity.
 Use can only access properties (methods/components) of declared

type
 Access to other components of dynamic type is through the

SELECT TYPE construct
 Similar to SELECT CASE, but for dynamic types
 Analog of ‘dynamic_cast’ in C++
 TYPE IS (type) - dynamic type exactly matches type
 CLASS IS (type) - dynamic type is type or any extension

 If more than one matches, the one that is an extension of all others
is chosen.

 CLASS DEFAULT - matches any.
 Within each block, variable acts as if declared type is given on the

TYPE IS or CLASS IS clause.

5/20/08 OOP Polymporphism 19

Select Type Example
TYPE (animal) :: a
TYPE (vertebrate) :: b ! Extends animal
TYPE (mammal) :: c ! Extends vertebrate
TYPE (cat) :: d ! Extends mammal
TYPE (primate) :: e ! Extends mammal
CLASS (animal), pointer :: pet

SELECT TYPE (pet) ! Can also use assoc. (p => pet)
TYPE IS (primate)
 call pet % swingOnBranch()
TYPE IS (cat)
 call pet % sharpenClaws()
CLASS IS (mammal)
 call pet % shedHair()
CLASS DEFAULT
 …
END SELECT TYPE

5/20/08 OOP Polymporphism 20

Advanced Example - Decorate
 Combine polymorphism and “aggregation” to get new effects

 Override class methods for any extension of base class
 Still acts as proper subclass
 E.g. add a diagnostic to certain methods

type base
 …
end type base
type, extends(base) :: decorator

class (base) :: reference
 …
end type decorator

type (someExtension) :: a
type (decorator) :: b
b = newDecorator(a) ! Store “a” as reference

5/20/08 OOP Polymporphism 21

Parameterized Types
 Sometimes referred to as parametric polymorphism
 Allows user-defined derived types that are parameterized by

‘kind’ and ‘length’ parameters.
 Similar capabilities as those provided for intrinsic types
 KIND parameters are constant (fixed at compile time) and can be

used as a KIND parameter for other intrinsic or derived types.
 Can have a default value

 LEN parameter is akin to that of the length parameter for character
and can be used for
 Character lengths of character components
 Bounds of array components

 Limited compared to templates in other languages
 E.g. cannot overload integer and floating point

5/20/08 OOP Polymporphism 22

Parameterized Syntax
Integer, parameter :: DP = kind(0.0d0)
Integer, parameter :: SP = kind(0.0)

type subregion(kind, im, jm)
integer, KIND :: kind = DP ! Default value
integer, LEN :: im, jm
real (kind) :: patch(im, jm)

End type subregion
…
type (subregion(DP, 10, 20)) :: dp
type (subregion(SP, 20, jm=20)) :: sp ! Named arg
type (subregion(10, 20)) ! Default DP

5/20/08 OOP Polymporphism 23

Parameter Enquiry
 Value of TYPE and KIND parameters can be obtained

as:
print*, obj % kind
print*,obj % im, obj % jm

 Extension for intrinsic types to match this style

character(len=MAXLEN) :: string
real (Kind=KIND(0.0D0)) :: x

print*, string % len
print*, x % kind

5/20/08 OOP Polymporphism 24

Allocatable Parameterized
 Deferred types for parameterized allocatable variables

are specified at allocation.
 Non-deferred types must agree

Type (subregion(SP,im=10,jm=5) :: a
Type (subregion(SP,:,:), ALLOCATABLE ::

myRegion,b,c
! This one copies from the source
Allocate(myRegion, SOURCE=a) ! Or
! This one does not copy
Allocate(subregion(SP,im=10,jm=5) :: b,c)

5/20/08 OOP Polymporphism 25

Dummy Variables
 For a dummy argument, an asterisk (*) may be used to

indicate an assumed value for LEN parameters
 KIND parameters must be an initialization expression

type (subregion(SP,im=7,jm=8)) :: a
call proc(a)
…
subroutine proc(arg)
 ! im,jm from actual argument
 type (subregion(SP,*,*)) :: arg
end subroutine proc

5/20/08 OOP Polymporphism 26

Supported features
 IBM XLF has procedure pointers
 Polymorphic variables generally supported by both

IBM XLF and NAG F95
 Support is somewhat fragile at this time
 No support yet for Unlimited Polymorphic Entities.

 Parameterized types generally not available at this
time.

5/20/08 OOP Polymporphism 27

Pitfalls and Best Practices
 Polymorphic variables must have either the

ALLOCATABLE or POINTER attribute or be a dummy
variable. (Always get dynamic type from other entity.)

 Polymorphism combined with subclassing is generally
safer and clearer than procedure pointers.

5/20/08 OOP Polymporphism 28

Resources
 SIVO Fortran 2003 series:

 https://modelingguru.nasa.gov/clearspace/docs/DOC-1390
 Questions to Modeling Guru: https://modelingguru.nasa.gov
 SIVO code examples on Modeling Guru
 Fortran 2003 standard:

http://www.open-std.org/jtc1/sc22/open/n3661.pdf
 John Reid summary:

 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.pdf
 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.ps.gz

 Newsgroups
 http://groups.google.com/group/comp.lang.fortran

 Mailing list
 http://www.jiscmail.ac.uk/lists/comp-fortran-90.html

