Modeling with TDD



Motivation

Last time:
 TDD
* modeling example: decay model

Is TDD a technique that can be applied to modeling projects in
the earth science community?

|s TDD advantageous?



Motivation

* Atypical modeling project proceeds in the following steps
. decision what to model

. mathematical formulation of the model

. numerical solution of the model

. analysis / understanding of the model output

. comparison with data /validation
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. hypothesis testing / prediction
* Most of the times these steps are iterated several times



Fundamental Conservation Principles

 There are several conservation principles that need to be
considered when studying fluid motions. These are

1.

s Wi

Conservation of momentum (Newton’s laws of motion)
Conservation of mass

Conservation of internal energy (heat)

Conservation of salt.

Equation of state p=p(S,T,p)

* Allthese equations?® are coupled with each other, which
makes the equations describing fluid motions a coupled
system of partial differential equations.

Primitive equations
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“dynamical core” equations

Shallow water equations
Isopycnic/isentropic equations
Compressible Euler equations
Incompressible Euler equations
Boussinesqg-type approximations
Anelastic equations

Primitive equations

Pressure or mass coordinate equations



Decide what to model

Classical (and educational) approach: Simplify the governing equations
BEFORE numerics is introduced (e.g. by scale analysis, hydrostatic
approximation, Boussinesq or Anelastic approximation) depending on
the context.

Solutions to the governing equations have three important
propagation speeds:

— acoustic waves (speed of sound),

— gravity waves (gravity-wave speed), and

— advective motion (wind speed), which affect the time-step that can be used in
numerical procedures (constraint : cdt<dx).



Scale analysis

Example :

Typical observed values for mid-latitude synoptic systems:
U ~10 ms

W~ 102 ms?

L ~10°m
Ap/,ON 103 m?s

f, ~10%st (f =2Qsin0)

a ~10'm

H ~10*m
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Mathematical formulation of the model

Starting from the primitive equations, assume:

Homogeneous fluid : p=const
a shallow atmosphere with radius r=a+z ™~ a
Allow to drop Coriolis and metric terms which depend on w

Shallow water approximation : D/L<<1 where D and L are the
characteristic scales of the motion in the vertical and
horizontal respectively

— leads to the so called hydrostatic approximation.



Mathematical formulation of the model
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where Reference: Gill (1982)

h=H(x,y)+n(x,y,!)

h=H+n




Mathematical formulation of the model
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These allow momentum equations to be written in an alternate form
(conservative form) making reference to KE,PE and vorticity



Reference: Gill (1982)

Mathematical formulation of the model
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Applications of the shallow water model

Long waves

Tsunamis
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Numerical solution of the model

Rectangular basin — solid boundaries (no normal flow)

Regular grid in space, i.e. the water is subdivided into 2-D
boxes (for simplicity, all boxes have the same width and length
Ax), numbered by i for the x-direction and by j for the y-
direction. There are in total nx x ny boxes.
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Arrangements of shallow water variables
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A grid:

B grid:

C grid:

D grid:

Finite differencing
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Numerical solution of the model

* Solution is more stable if we use a staggered grid — choose the
C-grid.
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* Time stepping: leapfrog scheme Vi;

— 3 time levels
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Numerical solution of the model

nonlinear terms
finite differencing
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Numerical solution of the model — enter TDD

 What do we test first?
* Indentified various computations that need to be performed
e Start with a test that calculates pressure gradients terms

— Note that on C-grid H and eta are defined on the center of the box

— C-grid requires that u,v dimensions be u(nx+1,ny) and v(nx,ny+1)
respectively. Also, we assume the boundary condition that all
velocities vanish on the boundaries.



Numerical solution of the model — tests

A n 1
If n=const then PGF=O |

If n=x then PGF(x)=g(H+n), PGF(x)=0
If n=y then PGX(x)=0, PGF(y)=g(H+n)

nx=3, ny=3
dx=dy=1




Some observations

 TDD can be be used to drive the model development of a
shallow water model....but

— We now we need a testing framework: pFUnit is adequate

— Need to bootstrap setup: start testing immediately,
otherwise the additional “overhead” of getting spun up
may be discouraging to modelers

— It can be difficult (and time consuming) to come up with
meaningful tests

— Discipline is required

* Is it advantageous to use TDD to develop earth system
models?

— TDD can blend in within the flow of modeling project
— Can be used as a tool to teach modeling

— Keep in mind advantages of TDD: e.g. extensibility



The End



