Advanced Features of F90

Tom Clune
NASA GSFC (SIVO - 610.3)



Outline

Introduction

Modules

Pointers

User defined types

Optional arguments (time permitting)



Introduction

Intent is to focus on fairly narrow subset
of features introduced in F90

Emphasis on examples and best
practices

Please - ask questions as we go along



History of the Fortran Standard

ISO mandated schedule:
> Major revision every 10 years

o Minor revision every 5 years

FORTRAN 66 — first actual standard
FORTRAN 77

- block if/else/endif, overindexing, generic names for intrinsics, implicit none

o Capitalization changed — helps to recognize experts

Fortran 90 (formerly Fortran 8x)

o Array syntax, dynamic memory, modules, user defined types, numerous
intrinsic functions, free format, long identifiers, explicit procedure interfaces,
inline comments, ...

Fortran 95

> Very minor/obscure additions

- Generally still referred to as “F90” by users/vendors
> Universally implemented by vendors at this time.



Latest Fortran Standard

F2003

Has been the standard for 7 years!

Important new features
Standardized interoperability with C
Object-oriented programming, procedure pointers
ASSOCIATE construct
Full implementations are only just now becoming
available

IBM, Cray, NAG
Partial implementations are common - intel*, gfortran, g95

F2008 (F2010?) — minor? Probably not.

Co-Array Fortran — parallelism without the pain of
MPI



Fortran Resources

Lots of good material on web

Usenet - comp.lang.fortran lots of spam
Mailing list — comp-fortran-90

_ow volume, little spam

_ots of volunteer experts
nteresting discussions of subtle aspects

ModelingGuru.nasa.gov forums
Esp. if specific to NASA computing systems




FOO Modules

program units which act as containers for data and procedures
while limiting the visibility to external program units.

provide explicit interfaces for contained procedures and
subroutines

Provides strong argument checking

Argument count
TKR (type : kind : rank) of each argument

Useful for encapsulation — the hiding of implementation details
Think firewalls for source code
Simplest case is just a glorified common block
Typical 1st use for developer is to replace commons
Guarantees consistent use
Does not have memory alignment issues/tricks




FO90 Module syntax

MODULE / END MODULE
> begin/end declaration of a module

CONTAINS
- Ends declaration of module variables (and derived types)

- Begins section of subroutines and functions contained in
module

- Use if and only if module has procedures

PUBLIC, PRIVATE

o Attributes that specify which module entities are visible to
external procedures and modules

USE <module name> [ONLY: <entity>,..]
> Allow access to all or specified public entities from module



Basic structure of a module

module <module name>

<use statements>

implicit none

private

<module variable declarations>
contains

<procedure 1>

<procedure 2>

end module <module name>



Public and private entities

By default all module entities have the PUBLIC attribute

> |.e. all module entities are accessible by external procedures and
modules.

Can override with PRIVATE statement
- No module entities visible externally

> Also can confirm default with PUBLIC statement
> But not both

PUBLIC default is an unfortunate choice
- Can easily lead to complications with nested modules

- Strongly recommend always override with PRIVATE

Individual entities can override with attribute
real, public :: array(10)
integer :: ifirst
public :: ifirst



FO0 explicit interfaces

Vanilla F77 procedure uses implicit interfaces
Compiler cannot properly check arguments for consistency
Permits some interesting tricks by mixing types

FO0 introduces explicit interfaces
Checks for consistent argument count and type/kind/rank
Functions/Subroutines in modules have explicit interfaces

Requires either USE statement or INTERFACE block in the
caller routine
Not discussing INTERFACE blocks today (rarely needed)

Common compile time error is “cannot find procedure such-
and-such”.

Indicates missing “use” statement

Compiler “mangles” names under hood so may be difficult to recognize



FOO Pointers

The POINTER attribute allows a variable to be
associated with the memory of another variable.

Think of as sophisticated, dynamic version of F77
EQUIVALENCE

Some restrictions on which variables can be associated.

Caution: Related to, but quite different from C pointers
Useful for

Dynamic memory allocation

Manipulating sub-arrays
Avoids copies, improves performance (sometimes)

Functions that return arrays instead of scalars
Advanced data structures. E.g. linked-lists



Pointer syntax

» Declaration
real, pointer :: x ! Scalar
real, pointer :: vec(:) ! 1D array
real, pointer :: arr(:,:) ! 2D, etc
or
real :: X
pointer :: X
» Usage
real, target :: y

X => vy ! Pointer assignment
x =y ! Copy value of y into target of x

» Pointer and target must have same TYPE, KIND, and RANK
» Can give provide initial value (F95)

real, pointer :: z => null()

- SAVE attribute is implicit, as with all other initialized variables
- Strongly recommended for global pointers



Simple pointer example

real, pointer :: ptr
real, target :: A, B
A =1.

ptr => A

A = 2.

print*, ptr ! Should print “2”
ptr = 3.
print*, A ! Should print “3”

ptr => B
ptr = 7.
print*, A ! Should still print “3.”




Useful intrinsic functions

» Nullify - restores pointer to pristine state

- Caution: does not deallocate memory (other pointers may still
point to the same target)

« Associated - returns .true. iff pointer is associated
with a target or a specific target
Useful to test result of function which sets a pointer

o

o

Note that results are undefined for uninitialized pointers!
- Usage:

Any target
if (associated(ptr)) then

Specific target (or pointer with same target)
if (associated(ptr, targ)) then

Do not confuse with allocated intrinsic for allocatables.

(¢]




Dynamic memory allocation

 |In addition to associating with a target
variable, pointer variables can be allocated

just like ALLOCATABLE variables.
o Target is implicit and not associated with any actual variable

» Important diffs from allocatable variables:

* Deallocation nullifies pointer
+ Pointer local vars not automatically deallocated

* Memory leak potential
Pointers can be reallocated without deallocation
Pointers can reassigned to other var without deallocation

- Best practice: use ALLOCATABLE attribute unless
POINTER IS required.




Dynamic memory example

integer, pointer :: indices(:)

real, pointer :: ptr(10) ! Not allowed

if (.not. Associated(indices)) then
allocate(indices(100))
end if

indices = ..

deallocate(indices)

allocate(indices(5:10)) ! Specify different lbound



Pointers and array slices

» Pointers can be associated with slices (subsections) of
multidimensional arrays

- Mostly straightforward, but there are some subtleties lurking about

» Examples:
real, target :: A(0:100,2:100)
real, pointer :: p1(:,:), p2(:,:),p3(:,:), p4(:,:)
p1=>A ' Whole array
p2 =>A(:,:) I Not whole array
p3 =>A(2:4,51:)
p4 => A(::10,50:80:10) ! strided

» What are the Ibound, ubound, and shape of p1, p2, p3?

MEE-EE_

[0,2] [100,100] [101,99]
p2 [1,1] [101,99] [101,99]
p3 [1,1] 3,50] [3,50]

P4 [1,1] [11,4] [11,4]



Pointers actual arguments

» An associated pointer variable can be passed as
an actual argument as though it was a regular
variable

- Must be associated
- Usual Fortran rules against aliasing apply

real
real

real,

a =>
call
a =>
call

tracerl1(100,10)
tracer2(100,10)
pointer :: a(:,:)
tracerl
sub(a) ! Same as call sub(tracerl)
tracer?2
sub(a) ! Same as call sub(tracer2)



Pointer dummy arguments

Dummy arguments can also have the
pointer and target attributes

Pointer dummy:
requires a pointer actual

association status of dummy is that of actual at
entry (can be null)

association status of actual is that of dummy at
exit (can be null)

requires explicit interface

cannot specify “intent”
Ambiguous meaning
Permitted in F2003



Pointer Function Return

» Can be useful to have a function or subroutine return
a dynamically sized array.

- POINTER attribute is necessary if array is to be allocated by
the procedure

> Potential source of memory leaks — caller responsible for
deallocation

- E.g. suppose we wanted to have a function that returns a
dynamically sized array:



Example: Pointer function value

function newGridArray() result(array)
real, pointer :: array(:,:,:)
allocate(array(IM,JdJM,LM))

end function newGridArray
real, pointer, dimension(:,:,:) :: u, v, w

u => newGridArray()
v => newGridArray/()

w => newGridArray()

- Later we will see how to use derived
types to pass in the grid dimensions



User-defined Data Types

Provides ability to declare new “types”

Collections of entities of intrinsic types and/or other user-
defined types

Esp. useful for multiple instances of such collections
Introduces higher-level structure: treat many as one
Concept is to group items that are closely associated

Nearly impossible to underestimate the usefulness
Encapsulation and reuse

Replacing common blocks, short meaningful argument lists
Generic programming

First step on path to object-oriented programming

Perhaps difficult to appreciate at first
Effective design requires experience



FI0 User-defined types

» F90 terminology is different than most languages. E.g.
- Define types are called “derived types”
- Member entities are referred to as “components”

« Components can have default initial values

» Declare type with TYPE / END TYPE block

In same part of procedure/module as other variable declarations
TYPE <type name>
<componentl> [= <initial value>]
<component2> [= <initial value>]

END TYPE

» Declare variable of a derived type via
TYPE (<type>) :: myVar ! Instance of <type>
» Access components with selector “%”:

> (Note: in C the selector is “.”)
x = myVarsfoo



Example 1. Complex numbers

» Suppose Fortran did not provide complex
numbers. We might do something like:

type Complex
real :: real
real :: imag

end type Complex

0. ! not required
0.

function add(zl, z2) result(z3)

type (Complex) :: zl1l, 22, z3
z3%real = zl3real + z2%real
z3%imag = zl%imag + z2%imag

end function add



Example 2: LatLonGrid

» We can have dynamically sized components, but
must use POINTER instead of ALLOCATABLE

> Fixed in F2003

» Computational grids involve a number of highly
related values that should be grouped together.

- Reduces duplication when model has multiple grids

type LatLonGrid
integer :: numLat, numLon, numLev
real :: dlat, dlon

real, pointer :: latitudes(:)
real, pointer :: longitudes(:)

real, pointer :: pressurelevels(:)
end type LatLonGrid

type (LatLonGrid) :: atmosGrid
type (LatLonGrid) :: oceanGrid



Example 2: cont'd

We can now return to the array
allocation example from the pointer
section:

function newGridArray(grid) result(array)
type (LatLonGrid) :: grid
real, pointer :: array(:,:,:)
allocate(array(grid%numLat, grid%numLon, &
& grid%numLev) )
end function newGridArray

real, pointer, dimension(:,:,:) :: u, v, w
type (LatLonGrid) :: atmosGrid

u => newGridArray(atmosGrid)

v => newGridArray(atmosGrid)

w => newGridArray(atmosGrid)



Example 3: Array of pointers

Might want to try:
real, pointer :: ptrs(:)
Unfortunately this is the syntax for an array
pointer

Ambiguity inherent in F90 notation

Instead, one can do this:
type MyPointer

real, poilnter :: ptr
end type MyPointer
type (MyPointer) :: ptrs(:)

Arises more often than one might think



Example 4: Nesting

type Field
real, pointer :: values(:,:,:) ! 3d
type (Grid), pointer :: gridReference
character(len=80) :: longName
character(len=80) :: shortName
character(len=80) :: units

end type Field
type Bundle

type (Field), pointer :: fields(:)
tnd type bundle



Example 5: Circular

- F90 permits circular type definitions if a pointer is
used to interrupt infinite regress:

type LinkedList

type (LinkedList), pointer :: next
type (LinkedList), pointer :: parent
real :: value

end type Linked List

function getNext(list) result(next)
type (LinkedList) :: list
type (LinkedList), pointer :: next
next => list%next

end function getNext



Put Type Definitions in Modules

When defined inside procedures can only be used in
that procedure

Cannot use “same text” to declare type elsewhere — treated
as different types

Passing types to procedures requires explicit
interface — trivial for modules

Type can be declared public/private just like module
variables
Oddity: can have PUBLIC variables of a PRIVATE type

Type components are default PUBLIC, but can be
declared PRIVATE

Cannot specify per component (fixed F2003)

PRIVATE enables encapsulation



Module/Type Design Philosophy

» Choose good meaningful names — make code readable

» Module defines one derived type
- One module per file (make it easy to name & find)
- Declare derived type PUBLIC
- Declare derived type components PRIVATE

- Few if any module variables
possibly some parameters

» Module contains any procedures that need to directly
manipulate type components

> Create trivial “accessor” procedures that get/set components
> Other modules/procedures work with type at an abstract level

- Make 1st argument the derived type argument
Think of subroutines as methods which act on the type

» Many/most changes to derived type will not require changing
external code - encapsulation



Eliminating Common Blocks

Why would we want to?

Promote reuse

Global entities complicate reusing procedure in
other context

Using procedure arguments does not
But ... passing long lists of arguments is
also bad
Derived types give us means to pass
large collection of data to subroutine
with a modest argument list.



Recipe: Eliminating a Common Block

1.
2.

5.

Create a container module

Declare derived type

a) For each member of common block create a similar type
component

b) Declare components PUBLIC (for now)
Declare a global variable of new type

Pass variable as argument to routines that use common block
a) Replace references to common with references to components

b) Forlarge codes, create 2 routines to copy type to/from common

Place in container module
Enables gradual transition as opposed to wholesale slaughter

c)  Try to identify suite of “helper” procedures that could contain most
component references — push them out of external procedures
If successful — declare components PRIVATE

Delete common block (rinse and repeat)



Generic programming

» Use F90 “overloading” to express functional similarities
- Enhances understanding of code
> Reduces magnitude of change if a type changes (procedure name does not)

» E.g. checkpoint()
interface checkpoint
module procedure checkpoint grid
module procedure checkpoint field
end interface

subroutine checkpoint grid(this, unit)
type (Grid) :: this
integer :: unit

end subroutine checkpoint grid
subroutine checkpoint field(this, unit)
type (Field) :: this
integer :: unit

end subroutine checkpoint field



Keyword arguments

FO0 allows arguments to be passed by
keyword instead of by order

Requires explicit interface

All arguments after first keyword must also
be passed by keyword

Example

subroutine print(name, unit)

end subroutine

call print(unit=5,name=‘Bob’)
call print(‘Bob’, unit) ! equivalent



Optional arguments

» F90 allows arguments to be optional

> No actual argument is required for corresponding optional
dummy.

o Declare with OPTIONAL attribute on dummy
> Optional args must be after all non-optional args
- Best practice: use keyword for actual argument

» lllegal/undefined to reference optional dummy if no
actual was passed

o Intrinsic PRESENT(<dummy>) returns .true. if-and-only-if an
actual has been passed

o Caution: Fortran does not “short-circuit”
Common mistake:

if (present(x) .and. x > 0) .. ! illegal
if (present(x)) then
if (x >0) ..

end if



Default values and optional args

» Quite often an optional argument is

associated with a default value that should be
used when actual is not PRESENT.

> Consistent style can improve legibility

> Introduce similarly named /local variable
Provide default value
Override if actual is present

Subroutine foo(x, y, flag)

logical, optional :: flag
logical :: flag
flag = .true. ! Default value

if (present(flag)) flag = flag



Best practices summary

 Pointers

- Use ALLOCATABLE for dynamic allocation except for
Data structure components
Procedure args and function return values

> |nitialize global pointers with NULL()
Do not use associated() with uninitialized pointers
» Modules
> Prefer default PRIVATE

» Data structures
- Choose good names
> Group entities that are tightly related
> Private components, public type

> Co-locate structure definition with routines that make heavy
use of components



Best practices (cont'd)

» Optional arguments
> Always check with PRESENT ( )
- Use keyword with optional
- Use sparingly
Generally at most one optional argument
Prefer overloading in most situations



Questions



