
Tom Clune
NASA GSFC (SIVO – 610.3)

  Introduction
 Modules
 Pointers
 User defined types
 Optional arguments (time permitting)

  Intent is to focus on fairly narrow subset
of features introduced in F90

 Emphasis on examples and best
practices

 Please - ask questions as we go along

  ISO mandated schedule:
◦  Major revision every 10 years
◦  Minor revision every 5 years

  FORTRAN 66 – first actual standard
  FORTRAN 77
◦  block if/else/endif, overindexing, generic names for intrinsics, implicit none
◦  Capitalization changed – helps to recognize experts

  Fortran 90 (formerly Fortran 8x)
◦  Array syntax, dynamic memory, modules, user defined types, numerous

intrinsic functions, free format, long identifiers, explicit procedure interfaces,
inline comments, …

  Fortran 95
◦  Very minor/obscure additions

◦  Generally still referred to as “F90” by users/vendors
◦  Universally implemented by vendors at this time.

  F2003
◦  Has been the standard for 7 years!
◦  Important new features
  Standardized interoperability with C
  Object-oriented programming, procedure pointers
  ASSOCIATE construct
◦  Full implementations are only just now becoming

available
  IBM, Cray, NAG
  Partial implementations are common - intel*, gfortran, g95

  F2008 (F2010?) – minor? Probably not.
◦  Co-Array Fortran – parallelism without the pain of

MPI

 Lots of good material on web
 Usenet - comp.lang.fortran lots of spam
 Mailing list – comp-fortran-90
◦  Low volume, little spam
◦  Lots of volunteer experts
◦  Interesting discussions of subtle aspects

 ModelingGuru.nasa.gov forums
◦ Esp. if specific to NASA computing systems

  program units which act as containers for data and procedures
while limiting the visibility to external program units.

  provide explicit interfaces for contained procedures and
subroutines
◦  Provides strong argument checking

  Argument count
  TKR (type : kind : rank) of each argument

  Useful for encapsulation – the hiding of implementation details
◦  Think firewalls for source code

  Simplest case is just a glorified common block
◦  Typical 1st use for developer is to replace commons
◦  Guarantees consistent use
◦  Does not have memory alignment issues/tricks

  MODULE / END MODULE
◦  begin/end declaration of a module

  CONTAINS
◦  Ends declaration of module variables (and derived types)
◦  Begins section of subroutines and functions contained in

module
◦  Use if and only if module has procedures

  PUBLIC, PRIVATE
◦  Attributes that specify which module entities are visible to

external procedures and modules

  USE <module name> [ONLY: <entity>,…]
◦  Allow access to all or specified public entities from module

module <module name>

 <use statements>

 implicit none

 private

 <module variable declarations>

contains

 <procedure 1>

 <procedure 2>

 …

end module <module name>

  By default all module entities have the PUBLIC attribute
◦  I.e. all module entities are accessible by external procedures and

modules.
  Can override with PRIVATE statement
◦  No module entities visible externally
◦  Also can confirm default with PUBLIC statement
◦  But not both

  PUBLIC default is an unfortunate choice
◦  Can easily lead to complications with nested modules
◦  Strongly recommend always override with PRIVATE

  Individual entities can override with attribute
 real, public :: array(10) 

integer :: ifirst  

public :: ifirst

  Vanilla F77 procedure uses implicit interfaces
◦  Compiler cannot properly check arguments for consistency
◦  Permits some interesting tricks by mixing types

  F90 introduces explicit interfaces
◦  Checks for consistent argument count and type/kind/rank
◦  Functions/Subroutines in modules have explicit interfaces

◦  Requires either USE statement or INTERFACE block in the
caller routine
  Not discussing INTERFACE blocks today (rarely needed)

◦  Common compile time error is “cannot find procedure such-
and-such”.
  Indicates missing “use” statement
  Compiler “mangles” names under hood so may be difficult to recognize

  The POINTER attribute allows a variable to be
associated with the memory of another variable.
◦  Think of as sophisticated, dynamic version of F77

EQUIVALENCE
◦  Some restrictions on which variables can be associated.
◦  Caution: Related to, but quite different from C pointers

  Useful for
◦  Dynamic memory allocation
◦  Manipulating sub-arrays
◦  Avoids copies, improves performance (sometimes)
◦  Functions that return arrays instead of scalars
◦  Advanced data structures. E.g. linked-lists

  Declaration
 real, pointer :: x ! Scalar 
 real, pointer :: vec(:) ! 1D array 
 real, pointer :: arr(:,:) ! 2D, etc

or
 real :: x  

pointer :: x

  Usage
 real, target :: y  

… 

x => y ! Pointer assignment 

x = y ! Copy value of y into target of x

  Pointer and target must have same TYPE, KIND, and RANK
  Can give provide initial value (F95)

 real, pointer :: z => null()

◦  SAVE attribute is implicit, as with all other initialized variables
◦  Strongly recommended for global pointers

real, pointer :: ptr

real, target :: A, B

A = 1.

ptr => A

A = 2.

print*, ptr ! Should print “2”

ptr = 3.

print*, A ! Should print “3”

ptr => B

ptr = 7.

print*, A ! Should still print “3.”

  Nullify - restores pointer to pristine state
◦  Caution: does not deallocate memory (other pointers may still

point to the same target)

  Associated – returns .true. iff pointer is associated
with a target or a specific target
◦  Useful to test result of function which sets a pointer
◦  Note that results are undefined for uninitialized pointers!
◦  Usage:

  Any target  
if (associated(ptr)) then

  Specific target (or pointer with same target)  
if (associated(ptr, targ)) then

◦  Do not confuse with allocated intrinsic for allocatables.

  In addition to associating with a target
variable, pointer variables can be allocated
just like ALLOCATABLE variables.
o  Target is implicit and not associated with any actual variable

  Important diffs from allocatable variables:
•  Deallocation nullifies pointer
•  Pointer local vars not automatically deallocated
•  Memory leak potential

•  Pointers can be reallocated without deallocation
•  Pointers can reassigned to other var without deallocation

•  Best practice: use ALLOCATABLE attribute unless
POINTER is required.

integer, pointer :: indices(:)

real, pointer :: ptr(10) ! Not allowed

…

if (.not. Associated(indices)) then

 allocate(indices(100))

end if

indices = …

…

deallocate(indices)

allocate(indices(5:10)) ! Specify different lbound

…

  Pointers can be associated with slices (subsections) of
multidimensional arrays
◦  Mostly straightforward, but there are some subtleties lurking about

  Examples:
real, target :: A(0:100,2:100)
real, pointer :: p1(:,:), p2(:,:),p3(:,:), p4(:,:)
p1 => A ! Whole array
p2 => A(:,:) ! Not whole array
p3 => A(2:4,51:)
p4 => A(::10,50:80:10) ! strided

  What are the lbound, ubound, and shape of p1, p2, p3?
Pointer L Bound U Bound Shape
p1 [0,2] [100,100] [101,99]
p2 [1,1] [101,99] [101,99]
p3 [1,1] [3,50] [3,50]
P4 [1,1] [11,4] [11,4]

  An associated pointer variable can be passed as
an actual argument as though it was a regular
variable
◦  Must be associated
◦  Usual Fortran rules against aliasing apply

real :: tracer1(100,10)

real :: tracer2(100,10)

real, pointer :: a(:,:)

a => tracer1

call sub(a) ! Same as call sub(tracer1)

a => tracer2

call sub(a) ! Same as call sub(tracer2)

 Dummy arguments can also have the
pointer and target attributes

 Pointer dummy:
◦  requires a pointer actual
◦  association status of dummy is that of actual at

entry (can be null)
◦  association status of actual is that of dummy at

exit (can be null)
◦  requires explicit interface
◦  cannot specify “intent”
◦  Ambiguous meaning
◦  Permitted in F2003

  Can be useful to have a function or subroutine return
a dynamically sized array.
◦  POINTER attribute is necessary if array is to be allocated by

the procedure
◦  Potential source of memory leaks – caller responsible for

deallocation
◦  E.g. suppose we wanted to have a function that returns a

dynamically sized array:

function newGridArray() result(array)

 real, pointer :: array(:,:,:)

 allocate(array(IM,JM,LM))

end function newGridArray

…

real, pointer, dimension(:,:,:) :: u, v, w

u => newGridArray()

v => newGridArray()

w => newGridArray()
•  Later we will see how to use derived

types to pass in the grid dimensions

  Provides ability to declare new “types”
◦  Collections of entities of intrinsic types and/or other user-

defined types
◦  Esp. useful for multiple instances of such collections
◦  Introduces higher-level structure: treat many as one
◦  Concept is to group items that are closely associated

  Nearly impossible to underestimate the usefulness
◦  Encapsulation and reuse
◦  Replacing common blocks, short meaningful argument lists
◦  Generic programming
◦  First step on path to object-oriented programming

  Perhaps difficult to appreciate at first
◦  Effective design requires experience

  F90 terminology is different than most languages. E.g.
◦  Define types are called “derived types”
◦  Member entities are referred to as “components”

  Components can have default initial values
  Declare type with TYPE / END TYPE block

  In same part of procedure/module as other variable declarations
 TYPE <type name> 

 <component1> [= <initial value>] 
 <component2> [= <initial value>] 
 … 

END TYPE

  Declare variable of a derived type via
 TYPE (<type>) :: myVar ! Instance of <type>

  Access components with selector “%”:
◦  (Note: in C the selector is “.”)

 x = myVar%foo  

  Suppose Fortran did not provide complex
numbers. We might do something like:

type Complex 
 real :: real = 0. ! not required 
 real :: imag = 0.  
end type Complex 

 function add(z1, z2) result(z3) 
 type (Complex) :: z1, z2, z3 
 z3%real = z1%real + z2%real 
 z3%imag = z1%imag + z2%imag 
end function add

  We can have dynamically sized components, but
must use POINTER instead of ALLOCATABLE
◦  Fixed in F2003

  Computational grids involve a number of highly
related values that should be grouped together.
◦  Reduces duplication when model has multiple grids

type LatLonGrid  

integer :: numLat, numLon, numLev  

real :: dlat, dlon

real, pointer :: latitudes(:) 

real, pointer :: longitudes(:)

real, pointer :: pressureLevels(:)  
end type LatLonGrid

type (LatLonGrid) :: atmosGrid  

type (LatLonGrid) :: oceanGrid

 We can now return to the array
allocation example from the pointer
section:
function newGridArray(grid) result(array) 
 type (LatLonGrid) :: grid 
 real, pointer :: array(:,:,:) 
 allocate(array(grid%numLat, grid%numLon, & 
 & grid%numLev)) 
end function newGridArray  
… 
real, pointer, dimension(:,:,:) :: u, v, w  
type (LatLonGrid) :: atmosGrid  
u => newGridArray(atmosGrid) 
v => newGridArray(atmosGrid) 
w => newGridArray(atmosGrid)

 Might want to try:
 real, pointer :: ptrs(:)

◦ Unfortunately this is the syntax for an array
pointer
◦ Ambiguity inherent in F90 notation

  Instead, one can do this:
 type MyPointer  

real, pointer :: ptr  

end type MyPointer  

type (MyPointer) :: ptrs(:)

 Arises more often than one might think

type Field

 real, pointer :: values(:,:,:) ! 3d

 type (Grid), pointer :: gridReference

 character(len=80) :: longName

 character(len=80) :: shortName

 character(len=80) :: units

end type Field

type Bundle

 type (Field), pointer :: fields(:)

tnd type bundle

•  F90 permits circular type definitions if a pointer is
used to interrupt infinite regress:

type LinkedList

 type (LinkedList), pointer :: next

 type (LinkedList), pointer :: parent

 real :: value

end type Linked List

function getNext(list) result(next)

 type (LinkedList) :: list

 type (LinkedList), pointer :: next

 next => list%next

end function getNext

  When defined inside procedures can only be used in
that procedure
◦  Cannot use “same text” to declare type elsewhere – treated

as different types

  Passing types to procedures requires explicit
interface – trivial for modules

  Type can be declared public/private just like module
variables
◦  Oddity: can have PUBLIC variables of a PRIVATE type

  Type components are default PUBLIC, but can be
declared PRIVATE
◦  Cannot specify per component (fixed F2003)
◦  PRIVATE enables encapsulation

  Choose good meaningful names – make code readable
  Module defines one derived type
◦  One module per file (make it easy to name & find)
◦  Declare derived type PUBLIC
◦  Declare derived type components PRIVATE
◦  Few if any module variables

  possibly some parameters

  Module contains any procedures that need to directly
manipulate type components
◦  Create trivial “accessor” procedures that get/set components
◦  Other modules/procedures work with type at an abstract level
◦  Make 1st argument the derived type argument

  Think of subroutines as methods which act on the type

  Many/most changes to derived type will not require changing
external code - encapsulation

 Why would we want to?
◦ Promote reuse
  Global entities complicate reusing procedure in

other context
  Using procedure arguments does not
◦ But … passing long lists of arguments is

also bad
 Derived types give us means to pass

large collection of data to subroutine
with a modest argument list.

1.  Create a container module
2.  Declare derived type

a)  For each member of common block create a similar type
component

b)  Declare components PUBLIC (for now)

3.  Declare a global variable of new type
4.  Pass variable as argument to routines that use common block

a)  Replace references to common with references to components
b)  For large codes, create 2 routines to copy type to/from common

•  Place in container module
•  Enables gradual transition as opposed to wholesale slaughter

c)  Try to identify suite of “helper” procedures that could contain most
component references – push them out of external procedures

•  If successful – declare components PRIVATE

5.  Delete common block (rinse and repeat)

  Use F90 “overloading” to express functional similarities
◦  Enhances understanding of code
◦  Reduces magnitude of change if a type changes (procedure name does not)

  E.g. checkpoint()
interface checkpoint 
 module procedure checkpoint_grid  
 module procedure checkpoint_field  
end interface 
… 
subroutine checkpoint_grid(this, unit) 
 type (Grid) :: this 
 integer :: unit 
 … 
end subroutine checkpoint_grid  
subroutine checkpoint_field(this, unit) 
 type (Field) :: this 
 integer :: unit 
 … 
end subroutine checkpoint_field

 F90 allows arguments to be passed by
keyword instead of by order
◦ Requires explicit interface
◦ All arguments after first keyword must also

be passed by keyword
 Example

 subroutine print(name, unit) 

… 

end subroutine 

… 

call print(unit=5,name=‘Bob’) 

call print(‘Bob’, unit) ! equivalent

  F90 allows arguments to be optional
◦  No actual argument is required for corresponding optional

dummy.
◦  Declare with OPTIONAL attribute on dummy
◦  Optional args must be after all non-optional args
◦  Best practice: use keyword for actual argument

  Illegal/undefined to reference optional dummy if no
actual was passed
◦  Intrinsic PRESENT(<dummy>) returns .true. if-and-only-if an

actual has been passed
◦  Caution: Fortran does not “short-circuit”

Common mistake:
if (present(x) .and. x > 0) … ! illegal  
if (present(x)) then 
 if (x >0) … 
end if

  Quite often an optional argument is
associated with a default value that should be
used when actual is not PRESENT.
◦  Consistent style can improve legibility
◦  Introduce similarly named local variable
  Provide default value
  Override if actual is present

 Subroutine foo(x, y, flag)

 …

 logical, optional :: flag

 logical :: flag_

 flag_ = .true. ! Default value

 if (present(flag)) flag_ = flag

 …

  Pointers
◦  Use ALLOCATABLE for dynamic allocation except for

  Data structure components
  Procedure args and function return values
◦  Initialize global pointers with NULL()

  Do not use associated() with uninitialized pointers

  Modules
◦  Prefer default PRIVATE

  Data structures
◦  Choose good names
◦  Group entities that are tightly related
◦  Private components, public type
◦  Co-locate structure definition with routines that make heavy

use of components

 Optional arguments
◦ Always check with PRESENT()

◦ Use keyword with optional
◦ Use sparingly
  Generally at most one optional argument
  Prefer overloading in most situations

