Using Rose as a workflow tool at NASA GSFC

Introduction
Rose is a workflow tool developed at the UK Met Office to set up, run, and manage operational assimilation/forecast suites. It very adeptly handles scheduling and dependencies, works in either an interactive or a batch environment, and provides a nice graphical interface (GUI) for monitoring the progress of the suites that are running. Rose was installed last year on NCCS and is essentially fully functional and ready to use. It is well- documented at the web site:

http://metomi.github.io/rose/doc/rose.html

Why Rose?
While there are other available workflow tools, we have a real requirement to ultimately use Rose to run GALWEM on the Air Force systems used by the 557 WW. This is the driving force behind our decision to bring Rose to GSFC to learn and use it for LDT/LIS/LVT production.

What is cylc?
The main engine of Rose is called “cylc”. Cylc was developed by the National Institute of Water and Atmospheric Research (NIWA) in New Zealand. The majority of the commands you will be invoking while using Rose will actually be cylc commands. The cylc documentation can be found at:

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiMoOS854zaAhVhTd8KHQ3ACy8QFggnMAA&url=https%3A%2F%2Fcylc.github.io%2Fcylc%2Fhtml%2Fsingle%2Fcug-html.html&usg=AOvVaw2Q7i0MdraVIZellDVCOprZ

Getting Started
It is simple to start using Rose on NCCS. First a few basics – Rose requires that a bash process be running. If you typically run in the bash environment, then this is already happening. If not, then just type “bash” and then type the name of the shell you generally use (e.g. “csh”). In addition, you need to load the module “other/rose”. Also, Rose uses python and fcm. in your path, you can include the following:

/usr/lib64/python2.6 /usr/local/other/SLES11.3/fcm/fcm2015.03.0/bin

To get started, you should set up a directory for your Rose suites. This should be separate from the directory containing your job scripts and your input/output data. The reason is that Rose makes a copy of the suite directory in your home directory, and if that directory also contains data directories, then it WILL fill up your home directory!

Setting up a simple suite

Setting up a suite involves having a directory with a minimum of two files:

· suite.rc
· rose-suite.conf (this can be empty but must exist)

The file suite.rc has two main sections:

· scheduling
· runtime

The scheduling section has a sub-section called “dependencies”. This is where you specify the order in which the various job steps run, and what their dependencies are.

The runtime section lists the various job steps. Under each job step you can specify a command or a script to initiate that step.

A very simple example of a suite.rc is below. This just issues a command to list files in a particular directory.

#[cylc]
[scheduling]
 [[dependencies]]
 graph = listfile
#
[runtime]
 [[listfile]]
 script = sleep 5 | ls -l $NOBACKUP/*.script

(note that the “sleep 5” command is just to slow it down for demonstration purposes in order to be able to view the job in a GUI window (see below). Once the suite.rc file is created, just type the command:

rose suite-run

This will start the suite and invoke the scripts you have scheduled in the suite.rc file.

In order to see the suite running in a GUI window, type:

rose suite-gcontrol

The GUI window that opens will look like this:
[image: Macintosh HD:Users:robertrosenberg:Desktop:Screen shot 2018-03-27 at 12.14.33 AM.png]

Viewing the output

When a Rose suite runs, it creates output subdirectories in your $HOME directory. For the above simple example, Rose will create a directory called “cylc-run”. Under that directory, will be a subdirectory with the same name as your suite parent directory. For the above example, I created the suite in a directory:

$NOBACKUP/cylc-test/demo-1/listfile

The output from running this suite will be placed in a directory:

$HOME/cylc-run/listfile

Under that directory will be a series of subdirectories containing all aspects of your job, including the actual run script created by Rose, the output of each job step, and any errors associated with each job step. The Rose/cylc job will generate a lot of files and directories in this output directory. This can be very confusing at first. For now, we will focus on the “log” directory. The most recent log directory will be soft-linked to the name “log”, while its real name will be

log.<yyyymmdd>T<hhmmss>Z

All previous log files will automatically be tarred and gzip’ed. So when you issue the command “cd log” you will always be viewing the most recent job. For the above example, the log directory will look like this:

./log.20180410T204601Z
./log.20180410T204601Z/suite
./log.20180410T204601Z/suite/out
./log.20180410T204601Z/suite/err
./log.20180410T204601Z/suite/log
./log.20180410T204601Z/suite/log.20180410T204602Z
./log.20180410T204601Z/suite/err.20180410T204602Z
./log.20180410T204601Z/suite/out.20180410T204602Z
./log.20180410T204601Z/rose-conf
./log.20180410T204601Z/rose-conf/20180410T164601-run.conf
./log.20180410T204601Z/rose-conf/20180410T164601-run.version
./log.20180410T204601Z/rose-suite-run.conf
./log.20180410T204601Z/rose-suite-run.version
./log.20180410T204601Z/rose-suite-run.log
./log.20180410T204601Z/rose-suite-run.locs
./log.20180410T204601Z/job
./log.20180410T204601Z/job/1
./log.20180410T204601Z/job/1/listfile
./log.20180410T204601Z/ job/1/listfile/01
./log.20180410T204601Z/job/1/listfile/01/job
./log.20180410T204601Z/job/1/listfile/01/job.status
./log.20180410T204601Z/job/1/listfile/01/job.out
./log.20180410T204601Z/job/1/listfile/01/job.err
./log.20180410T204601Z/job/1/listfile/01/job-activity.log
./log.20180410T204601Z/job/1/listfile/NN
./log.20180410T204601Z/suiterc
./log.20180410T204601Z/suiterc/20180410T204602Z-run.rc
./log.20180410T204601Z/db
./log.20180410T204601Z/rose-suite-run.host

To view the output in the log directory, we will go right to the directory:

job/1/listfile/01

In that directory, you will see the following:

job* job-activity.log	job.err job.out job.status

If we look at “job.out”, we will see something that looks like:

Suite : listfile

Task Job : 1/listfile/01 (try 1)
User@Host: rirosenb@discover31.prv.cube

-rwxr-xr-x 1 rirosenb s1137 770 Oct 17 2012 /discover/nobackup/rirosenb/airs2grads-qq.script
-rwxr-xr-x 1 rirosenb s1137 711 Oct 13 2012 /discover/nobackup/rirosenb/airs2grads-q.script
-rwxr-xr-x 1 rirosenb s1137 616 Oct 13 2012 /discover/nobackup/rirosenb/airs2grads.script
-rwxr-xr-x 1 rirosenb s1137 733 Oct 13 2012 /discover/nobackup/rirosenb/airs2grads-v6q.script
-rwxr-xr-x 1 rirosenb s1137 717 Dec 18 2013 /discover/nobackup/rirosenb/airs2grads-v6.script
-rwxr-xr-x 1 rirosenb s1137 720 Feb 27 2013 /discover/nobackup/rirosenb/airsstn-qq.script
-rwxr-xr-x 1 rirosenb s1137 555 Oct 13 2012 /discover/nobackup/rirosenb/airsstn-q.script
-rwxr-xr-x 1 rirosenb s1137 449 Oct 13 2012 /discover/nobackup/rirosenb/airsstn.script
-rwxr-xr-x 1 rirosenb s1137 539 Oct 13 2012 /discover/nobackup/rirosenb/airsstn_t.script
-rwxr-xr-x 1 rirosenb s1137 579 Oct 13 2012 /discover/nobackup/rirosenb/airsstn-v6q.script
-rwxr-xr-x 1 rirosenb s1137 579 Dec 18 2013 /discover/nobackup/rirosenb/airsstn-v6.script
-rwxr-xr-x 1 rirosenb s1401 54 Nov 7 2016 /discover/nobackup/rirosenb/asdf.script
-rwxr-xr-x 1 rirosenb s1401 450 Dec 9 00:52 /discover/nobackup/rirosenb/cc.script
-rwxr-xr-x 1 rirosenb s1137 308 May 22 2010 /discover/nobackup/rirosenb/incdate.script
-rwxr-xr-x 1 rirosenb s1137 201 Jun 26 2014 /discover/nobackup/rirosenb/math.script
-rwxr-xr-x 1 rirosenb s1401 654 Jan 14 17:10 /discover/nobackup/rirosenb/nccompile.script
-rwxr-xr-x 1 rirosenb s1137 17358 Sep 26 2010 /discover/nobackup/rirosenb/stats.script
-rwxr-xr-x 1 rirosenb s1401 591 Feb 5 17:53 /discover/nobackup/rirosenb/tarcheck.script
-rwxr-xr-x 1 rirosenb s1401 606 Feb 5 17:59 /discover/nobackup/rirosenb/targzcheck.script
-rwxr-xr-x 1 rirosenb s1401 220 Feb 5 18:22 /discover/nobackup/rirosenb/tar-it.script
-rwxr-xr-x 1 rirosenb s1137 1304 May 22 2010 /discover/nobackup/rirosenb/tar.prog2.script
-rwxr-xr-x 1 rirosenb s1137 773 Dec 1 2015 /discover/nobackup/rirosenb/test1.script
-rwxr-xr-x 1 rirosenb s1401 423 Aug 2 2016 /discover/nobackup/rirosenb/test3.script
-rwxr-xr-x 1 rirosenb s1137 2302 Dec 25 2015 /discover/nobackup/rirosenb/test4.script
-rw-r--r-- 1 rirosenb s1401 74 Aug 2 2016 /discover/nobackup/rirosenb/testftp.script
-rwxr-xr-x 1 rirosenb s1401 2930 Apr 7 2016 /discover/nobackup/rirosenb/testplot.script
-rwxr-xr-x 1 rirosenb s1137 2941 Apr 15 2016 /discover/nobackup/rirosenb/test.script
-rwxr-xr-x 1 rirosenb s1401 439 Mar 7 22:58 /discover/nobackup/rirosenb/t.script
2018-04-10T16:46:03-04 NORMAL - started
2018-04-10T16:46:08-04 NORMAL - succeeded

This contains some statements about the job, where it was run, when it started and when it ended. Note here that it “succeeded”. It also contains the printed output of the job (the list of files), since we had it write to the “terminal”, rather than redirecting it to a file.

In this case, since there were no errors, “job.err” is empty. If there were indeed errors, they would appear in this file.

The file “job.status” looks like this:

CYLC_BATCH_SYS_NAME=background
CYLC_BATCH_SYS_JOB_ID=29608
CYLC_BATCH_SYS_JOB_SUBMIT_TIME=2018-04-10T16:46:03-04
CYLC_JOB_PID=29608
CYLC_JOB_INIT_TIME=2018-04-10T16:46:03-04
CYLC_JOB_EXIT=SUCCEEDED
CYLC_JOB_EXIT_TIME=2018-04-10T16:46:08-04

The file “job-activity.log” looks like this:

[jobs-submit ret_code] 0
[jobs-submit out] 2018-04-10T16:46:03-04|1/listfile/01|0|29608
2018-04-10T16:46:03-04 [STDOUT] 29608

Finally, the file “job” contains the bash script created by Rose that makes the whole thing happen:

#!/bin/bash
#
++++ THIS IS A CYLC TASK JOB SCRIPT ++++
Suite: listfile
Task: listfile.1
Job log directory: 1/listfile/01
Job submit method: background
export CYLC_DIR='/gpfsm/dulocal/sles11/other/SLES11.3/cylc/7.4.0/gcc-4.8.5-pkgsrc/cylc-7.4.0'
export CYLC_VERSION='7.4.0'
CYLC_FAIL_SIGNALS='EXIT ERR TERM XCPU'

cylc__job__inst__cylc_env() {
 # CYLC SUITE ENVIRONMENT:
 export CYLC_CYCLING_MODE="integer"
 export CYLC_SUITE_FINAL_CYCLE_POINT="1"
 export CYLC_SUITE_INITIAL_CYCLE_POINT="1"
 export CYLC_SUITE_NAME="listfile"
 export CYLC_UTC="False"
 export CYLC_VERBOSE="False"

 export CYLC_SUITE_RUN_DIR="/home/rirosenb/cylc-run/listfile"
 export CYLC_SUITE_DEF_PATH="${HOME}/cylc-run/listfile"
 export CYLC_SUITE_DEF_PATH_ON_SUITE_HOST="/home/rirosenb/cylc-run/listfile"

 # CYLC TASK ENVIRONMENT:
 export CYLC_TASK_JOB="1/listfile/01"
 export CYLC_TASK_NAMESPACE_HIERARCHY="root listfile"
 export CYLC_TASK_TRY_NUMBER=1
}

cylc__job__inst__script() {
SCRIPT:
sleep 5 | ls -l $NOBACKUP/*.script
}

. "${CYLC_DIR}/lib/cylc/job.sh"
cylc__job__main

#EOF: 1/listfile/01

This is a lot of stuff for just running a simple “listfile” command, but remember that Rose and cylc are designed to handle very complex suites with a multiple job steps and multiple cycles. The value of all these generated files and directories will be more apparent under those circumstances. The cylc documentation goes into this in a lot more detail. From my experience, the job.out and job.err files are the main ones you will typically be checking.

Creating an “app” for your run script

You can also create an app file with default commands, scripts, and arguments. If you do this, then you do not need to specify a script or command in the suite.rc file unless you want to override the default settings. To create defaults for a particular job step, create an app/ subdirectory of the “parent” directory containing the suite.rc file, and in that directory create a file “rose-app.conf”. In the rose-app.conf file, put the original command:

script = sleep 5 | ls -l $NOBACKUP/*.script

Now, in the suite.rc file you only need to list the job step in the runtime step:

[[listfile]]

In the absence of any “script=” statement, Rose automatically looks in the “rose-app.conf” file for the default commands. If you want to override the default, you can simply add a “script=” line after the [[listfile]] heading. For example, if you now want to list all the “.f” files instead of the “.script” files, then in the suite.rc, add aback the line:
script = sleep 5 | ls -l $NOBACKUP/*.f

Running a suite in batch mode

Rose suites can also be run in batch mode. Rose supports all the major batch processing systems, including PBS and SLURM. Using our previous example, let’s set up very simple “listfile” suite to run on Discover:
#[cylc]
[scheduling]
 [[dependencies]]
 graph = listfile
#
[runtime]
 [[listfile]]
 script = sleep 5 | ls -l $NOBACKUP/*.script
 [[[job]]]
 batch system = slurm
 execution time limit = PT5M
 [[[directives]]]
 --job-name=listfile
 --ntasks=1
 --account=s1764
 --constraint=hasw

This will automatically submit the job to the Discover batch system. The GUI will list the job as “submitted” until it starts running and then it list it as “running” – just as if it was running interactively.

Dependencies
Suppose you now have two processes – we will call them listfile and listfile2. Say, you want listfile to run and then when it is finished, listfile2 will run. Then in the “dependencies” section of your suite.rc, your graph will look like this:

 [[dependencies]]
 graph = listfile => listfile2

Now, supposing you want to run listfile and listfile2 simultaneously, then your graph will look like:

 [[dependencies]]
 graph = listfile & listfile2

alternatively, you can state it like this:

 graph = """listfile
 listfile2"""

Note that triple quotes are used to bracket dependencies that take up more than one line.

Now, suppose you want to run listfile2 and listfile3 simultaneously after listfile is finished, then the graph will look like this:

 graph = """listfile => listfile3
 listfile => listfile2"""

You can also write this as:

 graph = listfile => listfile2 & listfile3

While this suite is running, the GUI screen will look like this:
[image: Macintosh HD:Users:robertrosenberg:Desktop:Screen shot 2018-03-27 at 12.33.38 AM.png]
Note that you can also view the suite like this:[image: Macintosh HD:Users:robertrosenberg:Desktop:Screen shot 2018-03-27 at 12.34.07 AM.png]

by clicking on the “pull-down menu of “View 1” on the menu bar and selecting the “bubble” view (see the 3 colored circles) option.

[bookmark: _GoBack]Cycling

Sometimes you want to repeat a cycle more than once. A good example of this is in data assimilation, where you will continuously run a forecast and use the first cycle as a first guess for an analysis, then use that analysis to initialize another forecast cycle to produce the next first guess…. Rose/cylc makes this easy with a large number of cycling options (see cylc documentation). A simple example is below:

#!jinja2
[cylc]
 abort if any task fails = true
[scheduling]
 cycling mode = integer
 initial cycle point = 1
 final cycle point = 3
 [[dependencies]]
 [[[R1]]]
 graph = listfile & listfile2 => listfile3
 [[[P1]]]
 graph = """listfile3[-P1] => listfile
 listfile3[-P1] => listfile2
 listfile & listfile2 => listfile3"""

[runtime]
 [[root]]
 script = rose task-run
 pre-script = {{SLEEP}} | echo 'Job started = Whew!' # Slow down so we can see it run
 post-script = sleep 10 | echo 'Job done = YAY'

 [[listfile]]
 [[listfile2]]
 [[listfile3]]

When running the above suite, issuing the command:

cylc graph listfile

would produce the following graph:
[image: Macintosh HD:Users:robertrosenberg:Desktop:Screen shot 2018-03-27 at 1.05.44 AM.png] Here, listfile and listfile2 run simultaneously, then listfile3 runs, and when that finishes, the same cycle will repeat a second and third time.

The GUI below shows how the graph view would look during the first “listfile3” step. Note it will only show what is running and its forward and backward immediate relative dependencies. Since “listfile3” in cycle 2 has not started yet, the GUI will not yet show anything in cycle 3.

[image: Macintosh HD:Users:robertrosenberg:Desktop:Screen shot 2018-03-27 at 12.53.10 AM.png]

The cylc documentation has a very thorough discussion of dependencies and cycling.

image2.png

image3.png

image4.png

image5.png

image1.png

