Workshop onTracers
(and Diagnostics)
in ModelE

T. Clune

Goals

» Establish consensus on desirable modifications to
implementation of tracers in modelE.

- Defer on issues that lack strong support and/or clear
Implementation mechanism.

» Improve long-term scientific productivity.
> Short term inconvenience as an investment in future.

Outline

» Issues with existing tracer interfaces
» Straw-man proposal for new interfaces

» Tangential tracer issues — half-baked
> Sources and diagnostics
> Chemistry

» Actions

Things that are difficult

Basic tracer issues

» Difficult to introduce new tracer
» Difficult to introduce new tracer property

» Tracer “thrashing”
- Independent efforts “stepping on each-other’s toes
> |.e. you are forced to “see” everyone else’s tracers
» Static specification
> Must recompile to modify tracer or property

» Hard to learn/understand implementation
» Separate infrastructure for ocean tracers

Other tracer issues

» Would like to be able to enable sets of tracers
- E.g. moments

» Intrusion into physics components
> Obscures legibility and degrades maintainability

» Inconsistent/duplicated functionality
> Format of source files
> Source/sink diagnostics

Observations on implementation

» Fragile constructs (programming by “coincidence”)
> Multiple changes must be coordinated for consistency
- E.g. some source diagnostics must precisely duplicate
order of sources
» Implementation is fractured across
- multiple files/procedures
- multiple variables/arrays
» Fine-grained redundancy.
- E.g.lotsof ‘k=k+ 1T’
» Heavy reliance upon CPP
- Obscures legibility
> Impedes testing

Other issues?

New approach

Tracer specification

» Switch from source code to data file
- More dynamic — change at run time
> More flexible — choose human friendly format
- More extensible

» Proposed format similar to rundeck parameters:

- Sequence of “key-value” pairs
- Need separator between tracers (duplicate keys)

Strawman file format

TracerProperties.txt

<header>
'END HEADER
--—-—-< separator >--——-——————-
name = Air
molecularMass = 28.9655d0 ! in line comment

---—-< separator >-—--———-—-
name = Rn222
molecularMass = 222.d0
ntm power = -21
radioactiveDecayRate = 2.1d-6 ! sec”-1

---—-< separator >-—--———-—-

name = Unobtainium
molecularMass = -100.d0
price = 1.d+14 ! $/g

Adding new property

» Now very easy — just add new “key” under
relevant tracers. E.g.

smells like eggs = .true.

» Note: no need to provide values for tracers that
lack a given property.
> Obviates need for default values

Initialization: importing tracers

» Desire to treat tracer property file as a database
- Same file regardless of rundeck/experiment
- Edit only to extend

» Currently model uses CPP to control tracers used
- CPP not feasible for new approach

» Use filtering to select tracers for given rundeck:
- Rundeck specifies tags/filters (e.g. ‘dust’, ‘isotopes’, etc)
- At initialization only tracers with those tags will be used
> Can alter at _run_ time which tracers are used

» Note: CPP is still used elsewhere in model
> True dynamic control only possible if CPP is eliminated

Using new implementation

1. Tracers will be represented by an array of derived
type (data structure):

type (Tracer type) :: activeTracers(:)

2. Accessing tracers:

use Tracer mod, only: activeTracers(:)

3. Tracer lookup:
idx = getIndex(tracers(:), name='S02"‘')
4. Getting property value:
call getValue(tracers (i), ‘isotopeIndex‘', mass)

or for a set of tracers:
call getValue(tracers(:), ‘name‘, names(:))

Other interfaces

1. Check if tracer has a given property:

flag = hasProperty(tracers (i), ‘isDust‘')

2. Subsetting tracers:
type (Tracer type), pointer :: subset(:)
subset => geEhithProperty(tracers, "Lerner)
subset => getWithValue (tracers, "Lerner’ ,.true.)

or
integer, pointer :: indices(:)
indices => getIndices (tracers, “radioactiveDecayRate")
3. Counting

num = countWithProperty (tracers, ‘tr wd TYPE')
num = countWithValue (tracers, ‘tr wd TYPE’,6 nWater)

Emergent capabilities

» Multiple tracer input files?

- Each sub-discipline manages “private” set
o Same infrastructure for ocean tracers?

» Temporarily include a variant tracer
> ...

Issues

» How to verify initial conversion from source code?
> Arrundeck to run them all? (apologies to Tolkien)
- Can we determine disjoint tracer sets a priori?

» Do we need mandatory properties?
> E.g. molecularMass, ntm_power
- Should we detect missing values for mandatory properties?

» Do we need to allow for default values?

» How to guard against misspelled properties?
> Provide list of allowed properties
- Rundeck? Input file? Source code?
- Allow alternate spellings/abbreviations?

» WIll performance be adequate?

Conventions

» Can we agree on a convention for file format?
- Separator, comment characters, header, etc.
- Do integer, real, string, and logical cover everything?

» Where should tracer property files be stored
- Repository? (i.e. with source code)
- Data directory?
» Opportunity to improve property names? E.g.
tr mm => molecularMass
tr:wd_TYPE => wetDepositionType

Tangential tracer issues

Tracer sources

» Some file metadata is hardcoded in source
> E.g. Linear ordering, connection to jlIs diagnostics

- Reduces flexibility
- E.g. difficult to add/remove source for experiment

> Possible source of errors — requires “coincidence”

» Hardcoded data formats (multiple formats are ok)
> Should use common interfaces
> Minimally should contain appropriate embedded metadata

» Multiple mechanisms for accessing source files
> Possible unification?

» Some issues similar to tracer property issues

- Scattered infrastructure: multiple files/arrays
- Long “SELECT CASE" block
> No partitioning among sub-disciplines

Sketch of alternative

» Introduce data structure (derived type)
- Represents abstraction of a data source

- Contains elements that specify any metadata not
available from actual source file

> Provide multiple initialization mechanisms
- Different types of sources can be registered in different ways

» Set of all tracer sources would be array of structs

» Some metadata for diagnostics could be
automated

» How to drive initialization?

> Source?
- Data file? (similar to tracer properties)

Tracer jls diagnostics

» Significant source code duplication
» Frequent trivial variations: E.g.

case ('Rn222’)

k
'Decay of '//trname (n)
'LOSS OF RADON-222 BY DECAY'

jls_decay (n)
sname Jjls (k)
lname jls (k)

case ('Pb210')

k ! special array for all
'Decay of '//trname (n)
'Loss of Pb210 by decay'

jls_decay(n)
sname Jjls (k)
lname jls (k)

» “per-type” defaults could significantly simplify diag.
specifications. (e.g. sname, Iname)

Possible diag infrastructure

» Specification file similar to tracer properties
- When you have a hammer, everything becomes a nail ...

tracer = Rn222
type = decay

shortName = Decay of $
longName = LOSS of RADON-222 BY DECAY

_ Unnecessary?
power = —26 _) ,
units = kg/s/mb/m"2 Derived from "type™?
weighting = 3 ! Undocumented option

Chemistry (very raw)

» Source duplication
» Hardwired reaction indices
» Ad hoc corrections/implementation

Tracers and Physics

» Tracer logic often obscures primary physics
Implementation
- Particularly severe in some components — e.g. PBL

» Can anything be done”?
> In some cases, tracer logic duplicates primary logic
- Create subroutine for duplicated logic
- Call once for physics, once for tracers
- Add new “export” quantities for physics component
- Tracer actions can then be done elsewhere

Conclusion/Actions

» Implement new tracer infrastructure
o Straightforward ~ 1 month (Tom)

» Migrate modelE to use new tracer infrastructure
> Verification tests?
- Who?

» Implement new tracer source infrastructure?
- Set up a follow-up meeting on this?

» Further refine concepts for tangential bits

Backup material

Challenges: Adding new tracer

- Steps

1. Increment “ntm_..." (e.g. ntm_018, ntm_gasexch,...)

2. Declare new global integer index for tracer lookup
(n_air, n_CO2n, n_CFCn, ...)

3. Add CASE statement for new name

4. Specify any non-default values for of existing tracer
properties

5. Introduce new conditional (usually CPP) to control
usage per rundeck

Potential secondary changes
1. Add related sources/diagnostics

Challenges: Adding new property

- Steps
1. Create new global array of size “ntm” to store values
for property (usu. real*8)
2. Provide default value before top of tracer select case
3. Override default value for all non-default cases
4. Introduce logic to use property elsewhere

Potential secondary issues

1. Additional logic if property values depend on rundeck
2. May need counter for number of tracers with property

Challenges: New diagnostics

- Multiple types, but some fairly common themes

- Less need for user-defined attributes.

— Use static data structure
— Might still be useful for fine-grained control

- Use a more object-based approach to structure:
— Eliminate ad-hoc collection of global arrays
— Co-locate diagnostic data and procedures
— Use registration to “add” new diagnostic

— Tracer attributes can be used to effect which diagnostics
are active.

* E.g. If a diag only applies to species A,B, and C. Diag can
specify attribute to select those tracers.

Tracer Specification

- In source code - Input fileffiles

- Each attribute stored in - Attribute stored in “hash” (key-
unique global array value pairs)

. Implementation scattered in | | - Implementation in single
multiple files. source file.

R TN - “Tracers” are 1D list of tracer

collection of attribute arrays objects and 4D state.”
and 4D state. - Activation/deactivation of

tracers specified with run-time

- Activation/deactivation of parameter which queries

individual tracers with .
TN relevant attribute
compile time CPP tokens - Will provide lookup procedure

- No proucedU£e to *find” to return index of tracer “ABC”
tracer “ABC

Tracer Use

» Loop over tracers. Apply » Loop over tracers. Apply
operation if given operation if tracer has
attribute is nonzero (or given attribute.

non default). > If (hasAttribute(n,
‘decayRate’) ...

» Look-up value for
attribute.
- decayRate = get(n,
‘decayRate’)

Implementation Issues

May be useful to have registry of allowed attributes in the source code.
— Guards against typos in specification input.
— Requires recompilation for new attributes

File format should be similar to rundeck and ESMF config files:
— <attribute> = <value>

Might make sense to have separate tracer spec files for subsets of tracers
— Only if coherent non-overlapping sets can be agreed upon

Can have “duplicate” tracers if researcher wants to customize without impacting
other results.

Need procedure to count number of tracers with given attribute
n = countAttribute(tracers, attribute)

Intermediate time frame must coordinate CPP tokens with runtime attributes:

— #ifdef TOKEN_X
logical :: runtime_X = .true.
#else

logical :: runtime_X = .false.
#endif

Long time frame — reduce reliance upon CPP tokens.
— runtime_X becomes an input parameter.
— Can proceed one token at a time

Implementation Issues (cont’d)

- Less urgent how the 4D array of tracer values is
Implemented:
— Side-stepping overall modelE “registry” of arrays for now.
— Relatively less complex than the meta-data
— Must allocate after all tracer specs have been entered.
— Could have 3D pointers in each tracer object

- ESMF?

— Provides hash via ESMF_Attributes.

— Probably cumbersome as an interface given heavy use in
modelE

— Could be the back-end implementation though.

