
T. Clune

  Establish consensus on desirable modifications to
implementation of tracers in modelE.
◦  Defer on issues that lack strong support and/or clear

implementation mechanism.
  Improve long-term scientific productivity.
◦  Short term inconvenience as an investment in future.

  Issues with existing tracer interfaces
  Straw-man proposal for new interfaces
  Tangential tracer issues – half-baked
◦  Sources and diagnostics
◦  Chemistry

  Actions

  Difficult to introduce new tracer
  Difficult to introduce new tracer property
  Tracer “thrashing”
◦  Independent efforts “stepping on each-other’s toes
◦  I.e. you are forced to “see” everyone else’s tracers

  Static specification
◦  Must recompile to modify tracer or property

  Hard to learn/understand implementation
  Separate infrastructure for ocean tracers

  Would like to be able to enable sets of tracers
◦  E.g. moments

  Intrusion into physics components
◦  Obscures legibility and degrades maintainability

  Inconsistent/duplicated functionality
◦  Format of source files
◦  Source/sink diagnostics

  Fragile constructs (programming by “coincidence”)
◦  Multiple changes must be coordinated for consistency
◦  E.g. some source diagnostics must precisely duplicate

order of sources
  Implementation is fractured across

  multiple files/procedures
  multiple variables/arrays

  Fine-grained redundancy.
◦  E.g. lots of ‘k = k + 1’

  Heavy reliance upon CPP
◦  Obscures legibility
◦  Impedes testing

  Switch from source code to data file
◦  More dynamic – change at run time
◦  More flexible – choose human friendly format
◦  More extensible

  Proposed format similar to rundeck parameters:
◦  Sequence of “key-value” pairs
◦  Need separator between tracers (duplicate keys)

<header>
!END HEADER
----< separator >---------
name = Air
 molecularMass = 28.9655d0 ! in line comment

----< separator >---------
name = Rn222
 molecularMass = 222.d0
 ntm_power = -21
 radioactiveDecayRate = 2.1d-6 ! sec^-1

----< separator >---------
name = Unobtainium
 molecularMass = -100.d0
 price = 1.d+14 ! $/g

TracerProperties.txt

  Now very easy – just add new “key” under
relevant tracers. E.g.

  Note: no need to provide values for tracers that
lack a given property.
◦  Obviates need for default values

name = H2S
 …
 smells_like_eggs = .true.
 …

  Desire to treat tracer property file as a database
◦  Same file regardless of rundeck/experiment
◦  Edit only to extend

  Currently model uses CPP to control tracers used
◦  CPP not feasible for new approach

  Use filtering to select tracers for given rundeck:
◦  Rundeck specifies tags/filters (e.g. ‘dust’, ‘isotopes’, etc)
◦  At initialization only tracers with those tags will be used
◦  Can alter at _run_ time which tracers are used

  Note: CPP is still used elsewhere in model
◦  True dynamic control only possible if CPP is eliminated

1.  Tracers will be represented by an array of derived
type (data structure):
 type (Tracer_type) :: activeTracers(:)

2.  Accessing tracers:
 use Tracer_mod, only: activeTracers(:)

3.  Tracer lookup:
 idx = getIndex(tracers(:), name=‘SO2‘)

4.  Getting property value:
 call getValue(tracers(i), ‘isotopeIndex‘, mass)
or for a set of tracers:
 call getValue(tracers(:), ‘name‘, names(:))

1.  Check if tracer has a given property:
 flag = hasProperty(tracers(i),‘isDust‘)

2.  Subsetting tracers:
 type (Tracer_type), pointer :: subset(:)
 subset => getWithProperty(tracers, `Lerner`)
 subset => getWithValue(tracers, `Lerner`,.true.)

or
 integer, pointer :: indices(:)
 indices => getIndices(tracers, `radioactiveDecayRate`)

3.  Counting
 num = countWithProperty(tracers, ‘tr_wd_TYPE’)
 num = countWithValue(tracers, ‘tr_wd_TYPE’, nWater)

  Multiple tracer input files?
◦  Each sub-discipline manages “private” set
◦  Same infrastructure for ocean tracers?

  Temporarily include a variant tracer
  …

  How to verify initial conversion from source code?
◦  A rundeck to run them all? (apologies to Tolkien)
◦  Can we determine disjoint tracer sets a priori?

  Do we need mandatory properties?
◦  E.g. molecularMass, ntm_power
◦  Should we detect missing values for mandatory properties?

  Do we need to allow for default values?
  How to guard against misspelled properties?
◦  Provide list of allowed properties
  Rundeck? Input file? Source code?
◦  Allow alternate spellings/abbreviations?

  Will performance be adequate?

  Can we agree on a convention for file format?
◦  Separator, comment characters, header, etc.
◦  Do integer, real, string, and logical cover everything?

  Where should tracer property files be stored
◦  Repository? (i.e. with source code)
◦  Data directory?

  Opportunity to improve property names? E.g.
 tr_mm => molecularMass
 tr_wd_TYPE => wetDepositionType

  Some file metadata is hardcoded in source
◦  E.g. Linear ordering, connection to jls diagnostics
◦  Reduces flexibility
  E.g. difficult to add/remove source for experiment
◦  Possible source of errors – requires “coincidence”

  Hardcoded data formats (multiple formats are ok)
◦  Should use common interfaces
◦  Minimally should contain appropriate embedded metadata

  Multiple mechanisms for accessing source files
◦  Possible unification?

  Some issues similar to tracer property issues
◦  Scattered infrastructure: multiple files/arrays
◦  Long “SELECT CASE” block
◦  No partitioning among sub-disciplines

  Introduce data structure (derived type)
◦  Represents abstraction of a data source
◦  Contains elements that specify any metadata not

available from actual source file
◦  Provide multiple initialization mechanisms
  Different types of sources can be registered in different ways

  Set of all tracer sources would be array of structs
  Some metadata for diagnostics could be

automated
  How to drive initialization?
◦  Source?
◦  Data file? (similar to tracer properties)

  Significant source code duplication
  Frequent trivial variations: E.g.

  “per-type” defaults could significantly simplify diag.
specifications. (e.g. sname, lname)

 case ('Pb210')
 …
 jls_decay(n) = k ! special array for all
 sname_jls(k) = 'Decay_of_'//trname(n)
 lname_jls(k) = 'Loss of Pb210 by decay'

 case ('Rn222’)
 …
 jls_decay(n) = k
 sname_jls(k) = 'Decay_of_'//trname(n)
 lname_jls(k) = 'LOSS OF RADON-222 BY DECAY'

  Specification file similar to tracer properties
◦  When you have a hammer, everything becomes a nail …

 tracer = Rn222
 type = decay
 shortName = Decay of $
 longName = LOSS of RADON-222 BY DECAY
 power = -26
 units = kg/s/mb/m^2
 weighting = 3 ! Undocumented option
 …

Unnecessary?
Derived from “type”?

  Source duplication
  Hardwired reaction indices
  Ad hoc corrections/implementation

  Tracer logic often obscures primary physics
implementation
◦  Particularly severe in some components – e.g. PBL

  Can anything be done?
◦  In some cases, tracer logic duplicates primary logic
  Create subroutine for duplicated logic
  Call once for physics, once for tracers
◦  Add new “export” quantities for physics component
  Tracer actions can then be done elsewhere

  Implement new tracer infrastructure
◦  Straightforward ~ 1 month (Tom)

  Migrate modelE to use new tracer infrastructure
◦  Verification tests?
◦  Who?

  Implement new tracer source infrastructure?
◦  Set up a follow-up meeting on this?

  Further refine concepts for tangential bits

•  Steps
1.  Increment “ntm_...” (e.g. ntm_o18, ntm_gasexch,…)
2.  Declare new global integer index for tracer lookup

(n_air, n_CO2n, n_CFCn, …)
3.  Add CASE statement for new name
4.  Specify any non-default values for of existing tracer

properties
5.  Introduce new conditional (usually CPP) to control

usage per rundeck
Potential secondary changes

1.  Add related sources/diagnostics

•  Steps
1.  Create new global array of size “ntm” to store values

for property (usu. real*8)
2.  Provide default value before top of tracer select case
3.  Override default value for all non-default cases
4.  Introduce logic to use property elsewhere

•  Potential secondary issues
1.  Additional logic if property values depend on rundeck
2.  May need counter for number of tracers with property

•  Multiple types, but some fairly common themes
•  Less need for user-defined attributes.

– Use static data structure
– Might still be useful for fine-grained control

•  Use a more object-based approach to structure:
– Eliminate ad-hoc collection of global arrays
– Co-locate diagnostic data and procedures
– Use registration to “add” new diagnostic
– Tracer attributes can be used to effect which diagnostics

are active.
•  E.g. If a diag only applies to species A,B, and C. Diag can

specify attribute to select those tracers.

Current Proposed

•  In source code
•  Each attribute stored in

unique global array
•  Implementation scattered in

multiple files.
•  “Tracers” are disconnected

collection of attribute arrays
and 4D state.

•  Activation/deactivation of
individual tracers with
compile time CPP tokens

•  No procedure to “find”
tracer “ABC”

•  Input file/files
•  Attribute stored in “hash” (key-

value pairs)
•  Implementation in single

source file.
•  “Tracers” are 1D list of tracer

objects and 4D state.*
•  Activation/deactivation of

tracers specified with run-time
parameter which queries
relevant attribute

•  Will provide lookup procedure
to return index of tracer “ABC”

Current Proposed

  Loop over tracers. Apply
operation if given
attribute is nonzero (or
non default).

  Loop over tracers. Apply
operation if tracer has
given attribute.
◦  If (hasAttribute(n,

‘decayRate’) …
  Look-up value for

attribute.
◦  decayRate = get(n,

‘decayRate’)

•  May be useful to have registry of allowed attributes in the source code.
–  Guards against typos in specification input.
–  Requires recompilation for new attributes

•  File format should be similar to rundeck and ESMF config files:
–  <attribute> = <value>

•  Might make sense to have separate tracer spec files for subsets of tracers
–  Only if coherent non-overlapping sets can be agreed upon

•  Can have “duplicate” tracers if researcher wants to customize without impacting
other results.

•  Need procedure to count number of tracers with given attribute
n = countAttribute(tracers, attribute)

•  Intermediate time frame must coordinate CPP tokens with runtime attributes:
–  #ifdef TOKEN_X

logical :: runtime_X = .true.
#else
logical :: runtime_X = .false.
#endif

•  Long time frame – reduce reliance upon CPP tokens.
–  runtime_X becomes an input parameter.
–  Can proceed one token at a time

•  Less urgent how the 4D array of tracer values is
implemented:
– Side-stepping overall modelE “registry” of arrays for now.
– Relatively less complex than the meta-data
– Must allocate after all tracer specs have been entered.
– Could have 3D pointers in each tracer object

•  ESMF?
– Provides hash via ESMF_Attributes.
– Probably cumbersome as an interface given heavy use in

modelE
– Could be the back-end implementation though.

