Climate-in-a-Box (CIB) Workshop: Introduction and Overview

Gary Wojcik
Northrop Grumman Corporation
Software Integration and Visualization Office (SIVO)

Goddard Space Flight Center
September 21-22, 2010
Acknowledgements

- NASA’s High End Computing Program
- American Recovery and Reinvestment Act (ARRA)
- GSFC’s Office of the Chief Technologist-Internal Research and Development program
- NASA’s Earth Science Technology Office-Advanced Information Systems Technology program
- GSFC’s Codes 610, 581, and 583
CIB Staff

- NASA
 - Tsengdar Lee
 - Mike Seablom
 - Gail McConaughy (retired)
 - Tom Clune
 - Greg Shirah
 - Bill Putman

- Northrop Grumman
 - Carlos Cruz
 - Rob Burns
 - Shawn Freeman
 - Megan Damon
 - Eric Kemp
 - Phil Hayes
 - Andy Andrews
 - Bruce Van Aartsen
 - Shujia Zhou
 - John Qu
 - Gary Wojcik
CIB Staff

- Tetra Tech AMT
 - Rahman Syed
 - Hamid Oloso
 - Raj Pandian
- GST
 - John Evans
 - Ramon Linan
 - Lara Clemence
 - Jarrett Cohen
- Embedded Engineering
 - Larry Adelberg
 - Sal Scotto
CIB Vision

- CIB seeks to:
 - Develop/improve models through a more efficient “open” model development and validation process
 - Open climate/Earth science model development and validation to a community beyond traditional domain scientists
CIB Motivations

- NASA/NOAA climate/earth science models are difficult to use
 - Can be challenging for domain experts
 - Non-typical users (e.g., non-domain scientists, policymakers) may want to run models
CIB Motivations

- Supercomputing resources are not always readily accessible
 - Wait times in job queues can be extensive
 - Arduous application process for foreign nationals
CIB Goals

- Make NASA/NOAA climate/earth science models more accessible
- Explore desktop supercomputing architectures
- Package models and support software as a “toolkit” for desktop supercomputers
- Explore use of the system for “open” model development/validation
CIB Stages

- Port models to architectures other than typical supercomputers
 - Explore desktop architectures
 - Develop model process management tools
- Develop automated software management system
- Explore virtualization
CIB Overview

Desktop System
(testing, development, lower resolution runs)

Preconfigured Toolkit

Data/Process Management Tools
(workflow tool)

NASA/NOAA Models

Analysis Tools

User Additions

User-Provided Models/Tools

Traditional Cluster
(high resolution runs)

Model Run Information

Workflow “Switch” Capability
Modeling Toolkit

- Models (ModelE, GEOS5, WRF)
- Analysis tools (GrADS, NCL)
- Social networking/collaboration capabilities through NASA’s Modeling Guru (modelingguru.nasa.gov)
- Process management tools (e.g., workflow tool/NASA Experiment Designer)
Desktop Architectures

- Cray CX1
 - Project currently has 2 CX1’s
 - Cirrus: Development machine
 - Nimbus: Operational machine

- SGI Octane III
 - Evaluated a test machine
Nimbus Configuration

- 8 “compute nodes”
- Each node has
 - Two Intel 2.6GHz quad-core Nehalem CPUs
 - 24Gb DDR2 RAM
 - One 320Gb 7200rpm hard drive
- Infiniband and GigE networks connecting the compute nodes
Workflow Tool

- Simplifies/Automates model execution management and other processes
- Provides common look and feel between models and between systems
- Allows for experiment sharing and repeatability
Workflow “Switch” Capability

- Enable model execution to be as seamless as possible between CIB and larger cluster or other CIBs
 - Large HPC systems can be used for validation and simulations at a higher resolution
- Data movement through workflow or shared/open resource
- Virtualization: explore a virtual image that can be moved from CIB to larger cluster or other CIBs
Workshop Expectations

- Will not be providing
 - Desktop architecture sys admin training
 - Details on model science or model codes
- Software you will see and use has been tuned to our environment
Workshop Goals

- Provide overview of Climate in a Box (CIB)
 - Models
 - Workflow Tool
 - Distributed Modeling System

- Provide hands-on training to CIB users
 - Running CIB models
 - Developing Workflows for CIB models

- Receive feedback from CIB users on all aspects of CIB
Workshop Agenda Day 1

- Introduction and Models
 - Welcome (8:30am-9am)
 - GEOS-5 (9am-12pm)
 - Lunch Offsite
 - WRF (1-3pm)
 - ModelE (3-4pm)
Workshop Agenda Day 2

- Workflow Tool and Distributed Modeling System
 - Introduction to the NASA Workflow Tool (8:30-9am)
 - NASA Experiment Designer (NED; 9-10am)
 - Running the GEOS-5 Workflow (10-10:30am)
 - Creating a Workflow Part I (10:30-11:30am)
 - Lunch Offsite
 - Creating a Workflow Part II (12:30-2:30pm)
 - Distributed Modeling System (2:30-3:30pm)
 - Wrap-up (3:30-4:00)
Welcome!
gary.s.wojcik@nasa.gov
(240) 778-5699