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OpenMP History

! v1.0 Fortran API

! October 1997, taking over where ANSI X3H5 left

. . .

! v2.5, combined C/C++ and Fortran

! May 2005, clarification on memory model, lots of examples

! v3.0 public comment

! October 2007, more than two years of hard work



2

3

OpenMP Specification Process

! Controlled by OpenMP Architecture Review Board

(OpenMP ARB)

! 11 permanent members

! AMD, Cray, Fujitsu, HP, IBM, Intel, Microsoft, NEC, SGI, ST/PGI, Sun

! 5 auxiliary members

! LLNL/ASC, cOMPunity, EPCC, NASA/Ames, RWTH Aachen

! Subcommittees

! Language committee (headed by Mark Bull/EPCC)

! Tools committee (headed by Bronis de Supinski/LLNL)

! Test committee (headed by Michael Wong/IBM)

! Marketing committee (headed by Larry Meadows/Intel)

! Web site

! http://www.openmp.org/
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OpenMP 3.0 – Major New Features

! Tasking

! Move beyond loops with generalized tasks and support

complex and dynamic control flows

! Nest parallelism support

! Better definition of and control over nested parallel regions,

new APIs to determine nesting structure

! Enhanced loop schedules

! Support aggressive compiler optimizations and better runtime

control

! Loop collapse

! Combine nested loops together to expose more concurrency
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New Directives, APIs, Environment Vars

! Two new directives

! TASK

! TASKWAIT

! Nine new API routines

! omp_set_schedule, omp_get_schedule

! omp_get_ancestor_thread_num, omp_get_team_size

! omp_get_level, omp_get_active_level,

omp_get_thread_limit

! omp_set_max_active_levels, omp_get_max_active_levels

! Four new environment variables

! OMP_STACKSIZE, OMP_WAIT_POLICY

! OMP_THREAD_LIMIT, OMP_MAX_ACTIVE_LEVELS
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A Few of Other Stats

! Number of pages

! Spec 2.5: main 117, total 241

! Spec 3.0: main 145, total 323

! Number of glossary entries

! Spec 2.5: 44

! Spec 3.0: 72

! New sections for tasks in Spec 3.0

! Task Terminology 1.2.3 (2 pages)

! task Construct 2.7 (3 pages)

! Task Scheduling 2.7.1 (2 pages)

! New paragraph in Execution Model 1.3
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OpenMP Execution Model

! Starts with the initial thread

! Encounters a parallel construct

! Creates a team of threads, id 0 for the master thread

! Generates implicit tasks, one per thread

! Executes implicit tasks by threads in the team

! Encounters a worksharing construct

! Distributes work among threads (or implicit tasks)

! Encounters a task construct

! Generates an explicit task

! Execution of the task could be deferred

! Execution of explicit tasks

! At a task scheduling point (such as task, taskwait, barrier)

! Thread may switch from one task to another task

! At the end of a parallel construct

! All tasks complete their execution

! Only the master thread continues afterwards
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Execution Model Annotated

“Task Pools”

Schedule and exec eTasks

eTask 1

eTask 2

eTask 3
….

may be deferred

scheduling

Parallel construct

T0 T1 T2 T3

End parallel construct

iTask

exec

iTask

exec

iTask

exec

iTask

exec

Task Task Task

" implicit tasks cannot be deferred

" explicit tasks could be deferred

task

scheduling

points

master continues
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Task Concept

! Definition of a Task

! A code entity including control flow and its data environment

! Implicit and Explicit tasks

! Implicit tasks generated by the parallel directive

! Explicit tasks generated by the task directive

! Data environment is associated with tasks

! Default SHARED for implicit tasks

! Default FIRSTPRIVATE for explicit tasks (in most cases)

! Task synchronization

! TASKWAIT to synchronize child tasks of a generating task

! Implicit or explicit barriers to wait for all explicit tasks

! Locks are owned by tasks

! Set by a task, unset by the same task
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Task Directive

! Defines an explicit task

C/C++
#pragma omp task [clause…]
   structured block

Fortran
!$omp task [clause…]
   structured block
!$omp end task

where clause is as follows:

   if (scalar-expr)
   untied
   default(shared|none|private|firstprivate)
   private(list)
   firstprivate(list)
   shared(list)

Fortran only
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Task Synchronization

! With TASKWAIT

! Ensure all child tasks generated up to the point are complete

! At implicit or explicit barrier

! Wait for all explicit tasks generated within the current parallel

region to complete

! Synchronizing two tasks in the middle

! Use locks or the “flush” directive
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Implications from Task

! Well, it is there, whether you like it or not

! Good part

! Data is associated with tasks. It forces programmers to think

harder on data locality, potentially producing better codes.

! Work stealing (possible) may improve performance

! The model covers much boarder range of applications

! The catch

! Programmers have to be very careful on the scope of variables

and make sure they do not disappear or go out of scope

before the end of a task execution.

! Threadprivate data may not be preserved
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Task Switching – the Hard Part

! Definition

! The act of a thread switching its execution from one task to

another task

! Action

! Suspend or finish the current task

! Resume or start another task (with constraints)

! Can only occur at the task scheduling points

! Task scheduling points

! Right after the task construct

! At the end of a task region

! At taskwait, implicit or explicit barrier

! At implementation defined places (for untied tasks only)
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Thread Switching – the Bad Part

! Definition

! A task suspended by one thread, but resumed by a different

thread

! Tied vs Untied tasks

! For a tied task, thread switching is not allowed (i.e., the task is

tied to the same thread)

! task without the “untied” clause, implicit tasks

! For an untied task, thread switching is allowed

! explicit task with the “untied” clause

! Implication

! THREADPRIVATE data may not persist any longer

! Locks can only be owned by tasks, not by threads
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Task Scheduling – the Ugly Part

! For a task with IF (expr) evaluted to false

! The task (whether tied or untied) gets executed immediately

! For an untied task

! No rules on how it gets scheduled

! Rely on smart compiler/implementation for performance

! For a tied task not at a barrier

! Subject to the Task Scheduling Constraint

! Defined by a set of task regions currently tied to the thread

! The task can be scheduled

! if the set is empty, or

! if the task is a descendant of every task in the set

16

Other New Terminology

! Task region

! A region consisting of all code encountered during a task

execution

! Descendant task

! A child task of the task or one of its descendant tasks

! Ancestor thread

! A parent thread or one of its parent thread’s ancestor thread

! Active parallel region

! A parallel region with a team of more than one thread

! Inactive parallel region

! A parallel region with a team of only one thread
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Task Example – Pointer Chasing

! Single thread generates tasks, all threads execute

#pragma omp parallel private(p)
{

  #pragma omp single
  {
    p = listhead;
    while (p) {
        #pragma omp task
        process(p->data);
      p = p->next;
    }
  }
  // all tasks are complete by this point
}

“p” is 

firstprivate
for task
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Pointer Chasing – Multiple Lists

! Multiple threads generate and excute tasks

#pragma omp parallel private(p)
{

  #pragma omp for
  for (int i=0; i<numlists; i++)
  {
    p = listheads[i];
    while (p) {
        #pragma omp task
        process(p->data);
      p = p->next;
    }
  }
  // all tasks are complete by this point
}

“p” is 

firstprivate
for task
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Fibonacci Number

! Use recursive tasks and synchronization

int fib(int n)
{
  int x, y, sum;
  if (n < 2) return n;

   #pragma omp task shared(x)
    x = fib(n-1);
   #pragma omp task shared(y)
    y = fib(n-2);
   #pragma omp taskwait

  return(x+y);
}

Ensure calculations

for x and y are done

and storage space

does not disappear 
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Task Performance Results

All tests run on SGI Altix 4700 with 128 processors (UPC task implementation, Alex Duran et al.)

MultisortFloorplan

FFTAlignment
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Enhancing Nest Parallelism Support

! Setting number of threads

! With API omp_set_num_threads

! only defined for the outermost level in 2.5 (use num_threads)

! allowed for all levels in 3.0

! Querying nest levels

! New API routines for querying nest level, thread id and team

size at each nest level

! Resource constraints

! Maximum number of threads

! OMP_THREAD_LIMIT, omp_get_thread_limit

! Maximum number of nest levels

! OMP_MAX_ACTIVE_LEVELS,
omp_set/get_max_active_levels

22

Schedule Kinds

! STATIC schedule and NOWAIT

! The 2.5 spec does NOT guarantee the safe use of NOWAIT
here.  3.0 clarifies the meaning of STATIC.

! NPB-OMP is now conforming!

!$omp do schedule(static)
 do j=1,n
   a(j) = j
 enddo

!$omp enddo nowait
!$omp do schedule(static) 
 do j=1,n
   b(j) = a(j)
 enddo

allowed in 3.0!

data dependence
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Schedule Kinds

! SCHEDULE(AUTO)

! Allows an implementation to do anything it wants

! API routines for SCHEDULE(RUNTIME)
omp_set_schedule(kind,modifier)

omp_get_schedule(kind,modifier)

kind        = {omp_sched_static, omp_sched_dynamic,

 omp_sched_guided, omp_sched_auto}

modifier = chunk_size
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Loop Collapse

! For perfectly nested loops

!$omp do collapse(2)  
  do k=1,nz
    do j=1,ny
      do i=1,nx
        b(i) = …
      enddo
      do i=1,nx
        a(i,j,k) = b(i)+…
      enddo
    enddo
  enddo

Iteration space becomes nz*ny instead of nz
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Other Environment Variables

! OMP_WAIT_POLICY

! Controls how threads behave at barriers and locks

! Values

! ACTIVE - improve application performance

! PASSIVE - improve system responsiveness

! OMP_STACKSIZE

! Controls the OpenMP thread stack size

! Value in form of

! size | sizeB | sizeK | sizeM | sizeG     (default is K)
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Beyond OpenMP 3.0 . . .

! Error handling

! for API routines, directives

! Point-to-point synchronization

! to avoid the contentious, hectic flush

! Improving OpenMP performance and usability

! data touch, thread-data affinity, thread-processor binding, …

! Major change to the current language model

! thread subteams, others?


