
1

10/26/07 1

OpenMP3.0 – Moving Beyond Loops

Summary of New Features

Henry Jin

NAS, NASA Ames Research Center

2

OpenMP History

! v1.0 Fortran API

! October 1997, taking over where ANSI X3H5 left

. . .

! v2.5, combined C/C++ and Fortran

! May 2005, clarification on memory model, lots of examples

! v3.0 public comment

! October 2007, more than two years of hard work

2

3

OpenMP Specification Process

! Controlled by OpenMP Architecture Review Board

(OpenMP ARB)

! 11 permanent members

! AMD, Cray, Fujitsu, HP, IBM, Intel, Microsoft, NEC, SGI, ST/PGI, Sun

! 5 auxiliary members

! LLNL/ASC, cOMPunity, EPCC, NASA/Ames, RWTH Aachen

! Subcommittees

! Language committee (headed by Mark Bull/EPCC)

! Tools committee (headed by Bronis de Supinski/LLNL)

! Test committee (headed by Michael Wong/IBM)

! Marketing committee (headed by Larry Meadows/Intel)

! Web site

! http://www.openmp.org/

4

OpenMP 3.0 – Major New Features

! Tasking

! Move beyond loops with generalized tasks and support

complex and dynamic control flows

! Nest parallelism support

! Better definition of and control over nested parallel regions,

new APIs to determine nesting structure

! Enhanced loop schedules

! Support aggressive compiler optimizations and better runtime

control

! Loop collapse

! Combine nested loops together to expose more concurrency

3

5

New Directives, APIs, Environment Vars

! Two new directives

! TASK

! TASKWAIT

! Nine new API routines

! omp_set_schedule, omp_get_schedule

! omp_get_ancestor_thread_num, omp_get_team_size

! omp_get_level, omp_get_active_level,

omp_get_thread_limit

! omp_set_max_active_levels, omp_get_max_active_levels

! Four new environment variables

! OMP_STACKSIZE, OMP_WAIT_POLICY

! OMP_THREAD_LIMIT, OMP_MAX_ACTIVE_LEVELS

6

A Few of Other Stats

! Number of pages

! Spec 2.5: main 117, total 241

! Spec 3.0: main 145, total 323

! Number of glossary entries

! Spec 2.5: 44

! Spec 3.0: 72

! New sections for tasks in Spec 3.0

! Task Terminology 1.2.3 (2 pages)

! task Construct 2.7 (3 pages)

! Task Scheduling 2.7.1 (2 pages)

! New paragraph in Execution Model 1.3

4

7

OpenMP Execution Model

! Starts with the initial thread

! Encounters a parallel construct

! Creates a team of threads, id 0 for the master thread

! Generates implicit tasks, one per thread

! Executes implicit tasks by threads in the team

! Encounters a worksharing construct

! Distributes work among threads (or implicit tasks)

! Encounters a task construct

! Generates an explicit task

! Execution of the task could be deferred

! Execution of explicit tasks

! At a task scheduling point (such as task, taskwait, barrier)

! Thread may switch from one task to another task

! At the end of a parallel construct

! All tasks complete their execution

! Only the master thread continues afterwards

8

Execution Model Annotated

“Task Pools”

Schedule and exec eTasks

eTask 1

eTask 2

eTask 3
….

may be deferred

scheduling

Parallel construct

T0 T1 T2 T3

End parallel construct

iTask

exec

iTask

exec

iTask

exec

iTask

exec

Task Task Task

" implicit tasks cannot be deferred

" explicit tasks could be deferred

task

scheduling

points

master continues

5

9

Task Concept

! Definition of a Task

! A code entity including control flow and its data environment

! Implicit and Explicit tasks

! Implicit tasks generated by the parallel directive

! Explicit tasks generated by the task directive

! Data environment is associated with tasks

! Default SHARED for implicit tasks

! Default FIRSTPRIVATE for explicit tasks (in most cases)

! Task synchronization

! TASKWAIT to synchronize child tasks of a generating task

! Implicit or explicit barriers to wait for all explicit tasks

! Locks are owned by tasks

! Set by a task, unset by the same task

10

Task Directive

! Defines an explicit task

C/C++
#pragma omp task [clause…]
 structured block

Fortran
!$omp task [clause…]
 structured block
!$omp end task

where clause is as follows:

 if (scalar-expr)
 untied
 default(shared|none|private|firstprivate)
 private(list)
 firstprivate(list)
 shared(list)

Fortran only

6

11

Task Synchronization

! With TASKWAIT

! Ensure all child tasks generated up to the point are complete

! At implicit or explicit barrier

! Wait for all explicit tasks generated within the current parallel

region to complete

! Synchronizing two tasks in the middle

! Use locks or the “flush” directive

12

Implications from Task

! Well, it is there, whether you like it or not

! Good part

! Data is associated with tasks. It forces programmers to think

harder on data locality, potentially producing better codes.

! Work stealing (possible) may improve performance

! The model covers much boarder range of applications

! The catch

! Programmers have to be very careful on the scope of variables

and make sure they do not disappear or go out of scope

before the end of a task execution.

! Threadprivate data may not be preserved

7

13

Task Switching – the Hard Part

! Definition

! The act of a thread switching its execution from one task to

another task

! Action

! Suspend or finish the current task

! Resume or start another task (with constraints)

! Can only occur at the task scheduling points

! Task scheduling points

! Right after the task construct

! At the end of a task region

! At taskwait, implicit or explicit barrier

! At implementation defined places (for untied tasks only)

14

Thread Switching – the Bad Part

! Definition

! A task suspended by one thread, but resumed by a different

thread

! Tied vs Untied tasks

! For a tied task, thread switching is not allowed (i.e., the task is

tied to the same thread)

! task without the “untied” clause, implicit tasks

! For an untied task, thread switching is allowed

! explicit task with the “untied” clause

! Implication

! THREADPRIVATE data may not persist any longer

! Locks can only be owned by tasks, not by threads

8

15

Task Scheduling – the Ugly Part

! For a task with IF (expr) evaluted to false

! The task (whether tied or untied) gets executed immediately

! For an untied task

! No rules on how it gets scheduled

! Rely on smart compiler/implementation for performance

! For a tied task not at a barrier

! Subject to the Task Scheduling Constraint

! Defined by a set of task regions currently tied to the thread

! The task can be scheduled

! if the set is empty, or

! if the task is a descendant of every task in the set

16

Other New Terminology

! Task region

! A region consisting of all code encountered during a task

execution

! Descendant task

! A child task of the task or one of its descendant tasks

! Ancestor thread

! A parent thread or one of its parent thread’s ancestor thread

! Active parallel region

! A parallel region with a team of more than one thread

! Inactive parallel region

! A parallel region with a team of only one thread

9

17

Task Example – Pointer Chasing

! Single thread generates tasks, all threads execute

#pragma omp parallel private(p)
{

 #pragma omp single
 {
 p = listhead;
 while (p) {
 #pragma omp task
 process(p->data);
 p = p->next;
 }
 }
 // all tasks are complete by this point
}

“p” is

firstprivate
for task

18

Pointer Chasing – Multiple Lists

! Multiple threads generate and excute tasks

#pragma omp parallel private(p)
{

 #pragma omp for
 for (int i=0; i<numlists; i++)
 {
 p = listheads[i];
 while (p) {
 #pragma omp task
 process(p->data);
 p = p->next;
 }
 }
 // all tasks are complete by this point
}

“p” is

firstprivate
for task

10

19

Fibonacci Number

! Use recursive tasks and synchronization

int fib(int n)
{
 int x, y, sum;
 if (n < 2) return n;

 #pragma omp task shared(x)
 x = fib(n-1);
 #pragma omp task shared(y)
 y = fib(n-2);
 #pragma omp taskwait

 return(x+y);
}

Ensure calculations

for x and y are done

and storage space

does not disappear

20

Task Performance Results

All tests run on SGI Altix 4700 with 128 processors (UPC task implementation, Alex Duran et al.)

MultisortFloorplan

FFTAlignment

11

21

Enhancing Nest Parallelism Support

! Setting number of threads

! With API omp_set_num_threads

! only defined for the outermost level in 2.5 (use num_threads)

! allowed for all levels in 3.0

! Querying nest levels

! New API routines for querying nest level, thread id and team

size at each nest level

! Resource constraints

! Maximum number of threads

! OMP_THREAD_LIMIT, omp_get_thread_limit

! Maximum number of nest levels

! OMP_MAX_ACTIVE_LEVELS,
omp_set/get_max_active_levels

22

Schedule Kinds

! STATIC schedule and NOWAIT

! The 2.5 spec does NOT guarantee the safe use of NOWAIT
here. 3.0 clarifies the meaning of STATIC.

! NPB-OMP is now conforming!

!$omp do schedule(static)
 do j=1,n
 a(j) = j
 enddo

!$omp enddo nowait
!$omp do schedule(static)
 do j=1,n
 b(j) = a(j)
 enddo

allowed in 3.0!

data dependence

12

23

Schedule Kinds

! SCHEDULE(AUTO)

! Allows an implementation to do anything it wants

! API routines for SCHEDULE(RUNTIME)
omp_set_schedule(kind,modifier)

omp_get_schedule(kind,modifier)

kind = {omp_sched_static, omp_sched_dynamic,

 omp_sched_guided, omp_sched_auto}

modifier = chunk_size

24

Loop Collapse

! For perfectly nested loops

!$omp do collapse(2)
 do k=1,nz
 do j=1,ny
 do i=1,nx
 b(i) = …
 enddo
 do i=1,nx
 a(i,j,k) = b(i)+…
 enddo
 enddo
 enddo

Iteration space becomes nz*ny instead of nz

13

25

Other Environment Variables

! OMP_WAIT_POLICY

! Controls how threads behave at barriers and locks

! Values

! ACTIVE - improve application performance

! PASSIVE - improve system responsiveness

! OMP_STACKSIZE

! Controls the OpenMP thread stack size

! Value in form of

! size | sizeB | sizeK | sizeM | sizeG (default is K)

26

Beyond OpenMP 3.0 . . .

! Error handling

! for API routines, directives

! Point-to-point synchronization

! to avoid the contentious, hectic flush

! Improving OpenMP performance and usability

! data touch, thread-data affinity, thread-processor binding, …

! Major change to the current language model

! thread subteams, others?

