OpenMP3.0 — Moving Beyond Loops
Summary of New Features

Henry Jin
NAS, NASA Ames Research Center

A 10/26/07
NAS 7

i)

i OpenMP History

= v1.0 Fortran API
= October 1997, taking over where ANSI X3H5 left

= v2.5, combined C/C++ and Fortran
= May 2005, clarification on memory model, lots of examples

= v3.0 public comment
= October 2007, more than two years of hard work

A

NAS 7

i)

OpenMP Specification Process

Controlled by OpenMP Architecture Review Board
(OpenMP ARB)
= 11 permanent members
= AMD, Cray, Fujitsu, HP, IBM, Intel, Microsoft, NEC, SGI, ST/PGI, Sun
= 5 auxiliary members
= LLNL/ASC, cOMPunity, EPCC, NASA/Ames, RWTH Aachen
= Subcommittees
= Language committee (headed by Mark Bul/EPCC)
= Tools committee (headed by Bronis de Supinski/LLNL)
= Test committee (headed by Michael Wong/IBM)
= Marketing committee (headed by Larry Meadows/Intel)

= Web site
= http://www.openmp.org/

i)

OpenMP 3.0 — Major New Features

Tasking

= Move beyond loops with generalized tasks and support
complex and dynamic control flows

Nest parallelism support

= Better definition of and control over nested parallel regions,
new APIs to determine nesting structure

= Enhanced loop schedules

= Support aggressive compiler optimizations and better runtime
control

Loop collapse
= Combine nested loops together to expose more concurrency

A
hlnsﬁ/

i)

i New Directives, APIls, Environment Vars

= Two new directives
= TASK
« TASKWAIT

= Nine new API routines
= omp_set_schedule, omp_get_schedule
= omp_get_ancestor_thread_num, omp_get_team_size

= omp_get_level, omp_get_active_level,
omp_get_thread_limit

= omp_set_max_active_levels, omp_get_max_active_levels
= Four new environment variables

= OMP_STACKSIZE, OMP_WAIT_POLICY
= OMP_THREAD_LIMIT, OMP_MAX_ACTIVE_LEVELS

A 5

NAS 7

i)

i A Few of Other Stats

= Number of pages
= Spec 2.5: main 117, total 241
= Spec 3.0: main 145, total 323
= Number of glossary entries
= Spec 2.5:44
= Spec 3.0: 72
= New sections for tasks in Spec 3.0
= Task Terminology 1.2.3 (2 pages)
= task Construct 2.7 (3 pages)
= Task Scheduling 2.7.1 (2 pages)
= New paragraph in Execution Model 1.3

= 6
NAS 7

@

A

I\IASﬁ/

OpenMP Execution Model

Starts with the initial thread
Encounters a parallel construct
= Creates a team of threads, id O for the master thread
= Generates implicit tasks, one per thread
= Executes implicit tasks by threads in the team
Encounters a worksharing construct
= Distributes work among threads (or implicit tasks)
Encounters a task construct
= Generates an explicit task
= Execution of the task could be deferred
Execution of explicit tasks
= At a task scheduling point (such as task, taskwait, barrier)
= Thread may switch from one task to another task
At the end of a parallel construct
= All tasks complete their execution
= Only the master thread continues afterwards

A

I\IASﬁ/

Execution Model Annotated

4

| Parallel construct | “Task Pools”

¢T0 ¢T1 ¢T2 ¢T3

iTask| |iTask| |iTask| [iTask

eTask 1
eTask 2

exec | |exec | | exec | | exec _-" ETé_S'_‘_(3
- - - - ”
Y Task F ¥ = = = Task L‘ Task i:’ ’:‘ /, -’
task v Y A PR
scheduling (Schedule and exec eTasks f ="
points | | | — — —> may be deferred
| End parallel construct l <. — - - scheduling

¢ master continues

+ implicit tasks cannot be deferred
+ explicit tasks could be deferred

A

plﬁsﬁ/

Task Concept

Definition of a Task

= A code entity including control flow and its data environment
Implicit and Explicit tasks

= Implicit tasks generated by the parallel directive

= Explicit tasks generated by the task directive
Data environment is associated with tasks

= Default SHARED for implicit tasks

= Default FIRSTPRIVATE for explicit tasks (in most cases)
Task synchronization

= TASKWATIT to synchronize child tasks of a generating task

= Implicit or explicit barriers to wait for all explicit tasks
Locks are owned by tasks

= Set by a task, unset by the same task

@

A

plﬁsﬁ/

Task Directive

= Defines an explicit task

C/C++
#pragma omp task [clause..]
structured block

Fortran

!'Somp task [clause..]
structured block

!Somp end task

where clause is as follows: Fortran only
if (scalar-expr)
untied I N\
default (shared|none|private|firstprivate)
private (list)
firstprivate (list)
shared (list)

10

@

i Task Synchronization

= With TASKWAIT
= Ensure all child tasks generated up to the point are complete

= At implicit or explicit barrier

= Wait for all explicit tasks generated within the current parallel
region to complete

= Synchronizing two tasks in the middle
= Use locks or the “flush” directive

= "
NAS

@

i Implications from Task

= Well, it is there, whether you like it or not

= Good part

= Data is associated with tasks. It forces programmers to think
harder on data locality, potentially producing better codes.

= Work stealing (possible) may improve performance
= The model covers much boarder range of applications

= The catch

= Programmers have to be very careful on the scope of variables
and make sure they do not disappear or go out of scope
before the end of a task execution.

= Threadprivate data may not be preserved

12

A
hlnsﬁ/

@

Task Switching — the Hard Part

= Definition

= The act of a thread switching its execution from one task to
another task

= Action
= Suspend or finish the current task
= Resume or start another task (with constraints)
= Can only occur at the task scheduling points
= Task scheduling points
= Right after the task construct
= At the end of a task region
= At taskwait, implicit or explicit barrier
= At implementation defined places (for untied tasks only)

NAST 13

@

Thread Switching — the Bad Part

= Definition

= A task suspended by one thread, but resumed by a different
thread

= Tied vs Untied tasks
= For a tied task, thread switching is not allowed (i.e., the task is
tied to the same thread)
= task without the “untied” clause, implicit tasks
= For an untied task, thread switching is allowed
= explicit task with the “untied” clause
= Implication
= THREADPRIVATE data may not persist any longer
= Locks can only be owned by tasks, not by threads

14

i)

Task Scheduling — the Ugly Part

= For a task with IF (expr) evaluted to false
= The task (whether tied or untied) gets executed immediately

= For an untied task
= No rules on how it gets scheduled
= Rely on smart compiler/implementation for performance

= For a tied task not at a barrier
= Subject to the Task Scheduling Constraint
= Defined by a set of task regions currently tied to the thread
= The task can be scheduled

if the set is empty, or
if the task is a descendant of every task in the set

15

i)

Other New Terminology

= Task region

= A region consisting of all code encountered during a task
execution

= Descendant task
= A child task of the task or one of its descendant tasks
= Ancestor thread
= A parent thread or one of its parent thread’s ancestor thread
= Active parallel region
= A parallel region with a team of more than one thread
= Inactive parallel region
= A parallel region with a team of only one thread

16

i)

i Task Example — Pointer Chasing

= Single thread generates tasks, all threads execute

#pragma omp parallel private(p)
{
#pragma omp single

“‘p” is
p = listhead; firstprivate
while (p) { / for task
#pragma omp task
process (p->data) ;
P = p->next;
}

}
// all tasks are complete by this point

A

NAS 7

17

i)

i Pointer Chasing — Multiple Lists

= Multiple threads generate and excute tasks

#pragma omp parallel private(p)
{

#pragma omp for
for (int i=0; i<numlists; i++)

{
p = listheads[i];
while (p) {
#pragma omp task
process (p->data) ;
P = p->next;
}
}
// all tasks are complete by this point
}

“p” is

- firstprivate
/ for task

A

NAS 7

18

-]

Fibonacci Number

= Use recursive tasks and synchronization

int fib(int n)
{
int x, y, sum;
if (n < 2) return n;

#pragma omp task shared(x)
x = fib(n-1);

#pragma omp task shared(y)
y = fib(n-2);

#pragma omp taskwait

return (x+y) ;

— A
A

Ensure calculations
for x and y are done
and storage space
does not disappear

19

-]

Task Performance Results

W OMP wark sharing
W OWP nasted
275 | OMP ks

Alignment

speed-up

12z a4 8 2 16 20 2 W ® ! ?

WO rosed MONF rosod
Bl owp s 45 Mowr s
W il work-qvn I ol work-queon

@

Floorplan

speed-up
speed-up

#cpus

Multisort

J/L All tests run on SGI Altix 4700 with 128 processors (UPC task implementation, Alex Duran et al.) 5q

i)

A

I\IASﬁ/

Enhancing Nest Parallelism Support

= Setting number of threads
= With APl omp_set_num_threads
= only defined for the outermost level in 2.5 (use num_threads)
= allowed for all levels in 3.0
= Querying nest levels
= New API routines for querying nest level, thread id and team
size at each nest level
= Resource constraints
= Maximum number of threads
= OMP_THREAD_LIMIT, omp_get_thread_limit
= Maximum number of nest levels

= OMP_MAX_ACTIVE_LEVELS,
omp_set/get_max_active_levels

21

i)

A

I\IASﬁ/

Schedule Kinds

= STATIC schedule and NOWAIT

I$omp do schedule(static)

do j=1,n
a(3) = 3 /
enddo
1$omp enddo nowait
I$omp do schedule(static)
do j=1,n
b(j) = a(j) data dependence
enddo

| allowed in 3.0!

= The 2.5 spec does NOT guarantee the safe use of NOWAIT
here. 3.0 clarifies the meaning of STATIC.

= NPB-OMP is now conforming!

22

11

-]

Schedule Kinds

= SCHEDULE(AUTO)
= Allows an implementation to do anything it wants

= API routines for SCHEDULE(RUNTIME)
omp_set_ schedule (kind,modifier)
omp_get schedule (kind,modifier)

kind ={omp_sched static, omp_sched dynamic,
omp_sched guided, omp_sched _auto}
modifier = chunk_size

—
NAS”

23

-]

Loop Collapse

= For perfectly nested loops

1$omp do collapse(2)
do k=1,nz
do j=1,ny
do i=1,nx
b(i) = ..
enddo
do i=1,nx
a(i,j,k) = b(i)+.
enddo
enddo
enddo

Iteration space becomes nz*ny instead of nz

—
NAS”

24

12

i)

i Other Environment Variables

= OMP_WAIT_POLICY
= Controls how threads behave at barriers and locks
= Values
= ACTIVE - improve application performance
= PASSIVE - improve system responsiveness

= OMP_STACKSIZE
= Controls the OpenMP thread stack size
= Value in form of
= Size | sizeB | sizeK | sizeM | sizeG (default is K)

il

plﬁsﬁ/

25

i)

i Beyond OpenMP 3.0. ..

= Error handling
= for API routines, directives

Point-to-point synchronization
= to avoid the contentious, hectic flush

Improving OpenMP performance and usability

= data touch, thread-data affinity, thread-processor binding, ...

Major change to the current language model
= thread subteams, others?

il

plﬁsﬁ/

26

13

