WRF Quilting and Decomposition
Notes

Eric Kemp
2 March 2015



Quilting Preliminaries

* Two types of MPI tasks: compute (client) and //O (server)

* Compute tasks:

— Total number = nproc_x*nproc_y (number of processors along x
and y axes for decomposition)

— First number is zero

e |/O tasks:
— Total number = nio_groups*nio_tasks _per_group
— Nio_tasks per_group cannot exceed nproc_y

— First 1/0O task number immediately follows last compute task
number

* Code will attempt to match each /O task with compute
tasks in east-west rows

— ldeally nproc_y should be exact multiple of
nio_tasks per _group

Note: Only output is currently supported by I/O quilting, not input.



Sample Task Layouts
Example compute task layout ﬂnmm Y

nproc_x=4, nproc_y=3
o 1 2 3 ‘—>X

If nio_groups=2 and nio_groups_per_task=3, then:

- 8 9 10111 g7

13 < 4 5 6 7 > 16
12 = O 1 2 3 » 15
/0 Group 1 /O Group 2

* Each compute node in a row (e.g., tasks 0-3) will send data to a I/O server (e.g., 12 or 15)
at output time.

* One |/O group is selected on-the-fly at output time to handle output to a particular file.

* Within an I/O group, the servers will forward data to designated “root” server which will
perform the actual write.

Note: Above is based on running the code. The example in the source code comments does
not agree!



Quilting Performance

* An /O group can only handle one file write at a
time
— If too few 1/O groups available, WRF will stall

No 1 Groups
Quilting

wrfout 20.08 s 1.18 s 1.05s 1.20s
wrfdiag 0.64 s 63.88 s 0.50s 0.62s
wrf2dout 1.48 s 1.49s 19.92 s 0.68 s
wrfpress 0.56s 6.67 s 0.40s 0.74 s

Sample output times for A24 grid with nproc_x=53, nproc_y=12 compute tasks, varying
|/O groups with nio_tasks_per_group=12

Note: Reported output times are what compute tasks “see” when communicating and
waiting — does not necessarily reflect time spent writing by a 1/0 group



Quilting Recommendations &
Comments

Set nio_groups =5 (for wrfout, wrf2dout, wrfpress,
wrfdiagnostics, wrfrst files)

Try setting nio_tasks _per_groups so it can exactly
divide nproc_y

— Otherwise some I/O server(s) will have more compute
tasks to handle than others

— Don’t know how performance scales with tasks per group

Race condition: Multiple groups can’t write to same
file at time

Simple test runs still showed some strange stalls during
computational steps (not output times)



Decomposition Notes

Found several third-party discussions of running WRF on
HPC systems (Cray, STFC, Lenovo, Barcelona
Supercomputing Center)

All recommend setting nproc_x < nproc_y, but “sweet
spot” is problem and hardware dependent

Arguments (from Cray):

— Give inner loops larger lengths for better SSE vector and register
reuse

— Shorten outer loop lengths for better cache use and register
reuse

— Get more favorable halo exchange communications pattern
Suggest testing this!

Cray also points out a “reorder_mesh” namelist option to
try keeping adjacent compute tasks on the same node, but
this doesn’t work with quilting.



WRF HPC References

nttp://weather.arsc.edu/Events/AWS10/
Presentations/Johnsen.pdf

nttps://cug.org/5-publications/

proceedings attendee lists/CUG10CD/pages/1-
program/final program/CUG10 Proceedings/
pages/authors/01-5Monday/3C-Porter-paper.pdf
http://www.ecmwf.int/sites/default/files/HPC-
WS-Christidis.pdf

http://www.markomanolis.com/Research/Talks/
2013 BSC-ES-Course.pdf




